BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29939719)

  • 21. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations.
    Yin R; Wang Z; Tan S; Ma C; Wang B
    ACS Nano; 2023 Sep; 17(18):17610-17623. PubMed ID: 37666005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-Surface Synthesis and Characterization of Triply Fused Porphyrin-Graphene Nanoribbon Hybrids.
    Mateo LM; Sun Q; Liu SX; Bergkamp JJ; Eimre K; Pignedoli CA; Ruffieux P; Decurtins S; Bottari G; Fasel R; Torres T
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1334-1339. PubMed ID: 31729821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Confined Hydrogenation of Graphene Nanoribbons.
    Sung YY; Vejayan H; Baddeley CJ; Richardson NV; Grillo F; Schaub R
    ACS Nano; 2022 Jul; 16(7):10281-10291. PubMed ID: 35786912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.
    Bouwmeester D; Ghiasi TS; Borin Barin G; Müllen K; Ruffieux P; Fasel R; van der Zant HSJ
    ACS Appl Nano Mater; 2023 Aug; 6(15):13935-13944. PubMed ID: 37588262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron-Lattice Coupling in Armchair Graphene Nanoribbons.
    de Oliveira Neto PH; Teixeira JF; da Cunha WF; Gargano R; E Silva GM
    J Phys Chem Lett; 2012 Oct; 3(20):3039-42. PubMed ID: 26292246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, [Formula: see text]
    Lee YL; Zhao F; Cao T; Ihm J; Louie SG
    Nano Lett; 2018 Nov; 18(11):7247-7253. PubMed ID: 30251545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications.
    Shekhirev M; Vo TH; Mehdi Pour M; Lipatov A; Munukutla S; Lyding JW; Sinitskii A
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):693-700. PubMed ID: 27933763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic components embedded in a single graphene nanoribbon.
    Jacobse PH; Kimouche A; Gebraad T; Ervasti MM; Thijssen JM; Liljeroth P; Swart I
    Nat Commun; 2017 Jul; 8(1):119. PubMed ID: 28743870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the Number of Graphene Nanoribbons in Dual-Gate Field-Effect Transistors.
    Zhang J; Barin GB; Furrer R; Du CZ; Wang XY; Müllen K; Ruffieux P; Fasel R; Calame M; Perrin ML
    Nano Lett; 2023 Sep; 23(18):8474-8480. PubMed ID: 37671914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Edge Contacts to Atomically Precise Graphene Nanoribbons.
    Huang W; Braun O; Indolese DI; Barin GB; Gandus G; Stiefel M; Olziersky A; Müllen K; Luisier M; Passerone D; Ruffieux P; Schönenberger C; Watanabe K; Taniguchi T; Fasel R; Zhang J; Calame M; Perrin ML
    ACS Nano; 2023 Oct; 17(19):18706-18715. PubMed ID: 37578964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study.
    Baringhaus J; Edler F; Tegenkamp C
    J Phys Condens Matter; 2013 Oct; 25(39):392001. PubMed ID: 23945317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations.
    Yang W; Lucotti A; Tommasini M; Chalifoux WA
    J Am Chem Soc; 2016 Jul; 138(29):9137-44. PubMed ID: 27352727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fermi-Level Engineering of Nitrogen Core-Doped Armchair Graphene Nanoribbons.
    Wen ECH; Jacobse PH; Jiang J; Wang Z; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2023 Sep; 145(35):19338-19346. PubMed ID: 37611208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Bilbao N; Teyssandier J; Prechtl T; Cavani N; Tries A; Biagi R; De Renzi V; Feng X; Kläui M; De Feyter S; Bonn M; Narita A; Müllen K
    J Am Chem Soc; 2017 Jul; 139(28):9483-9486. PubMed ID: 28650622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution.
    Carbonell-Sanromà E; Brandimarte P; Balog R; Corso M; Kawai S; Garcia-Lekue A; Saito S; Yamaguchi S; Meyer E; Sánchez-Portal D; Pascual JI
    Nano Lett; 2017 Jan; 17(1):50-56. PubMed ID: 28073274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.