These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29939760)

  • 21. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers.
    Yan Z; Sajjan M; Scherer NF
    Phys Rev Lett; 2015 Apr; 114(14):143901. PubMed ID: 25910124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles.
    Rodrigo JA; Angulo M; Alieva T
    Opt Express; 2018 Jul; 26(14):18608-18620. PubMed ID: 30114037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-Field, On-Chip Optical Brownian Ratchets.
    Wu SH; Huang N; Jaquay E; Povinelli ML
    Nano Lett; 2016 Aug; 16(8):5261-6. PubMed ID: 27403605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Forces: From Fundamental to Biological Applications.
    Xin H; Li Y; Liu YC; Zhang Y; Xiao YF; Li B
    Adv Mater; 2020 Sep; 32(37):e2001994. PubMed ID: 32715536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces.
    Cuche A; Canaguier-Durand A; Devaux E; Hutchison JA; Genet C; Ebbesen TW
    Nano Lett; 2013 Sep; 13(9):4230-5. PubMed ID: 23927628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical Forces at the Nanoscale: Size and Electrostatic Effects.
    Rodríguez-Sevilla P; Prorok K; Bednarkiewicz A; Marqués MI; García-Martín A; García Solé J; Haro-González P; Jaque D
    Nano Lett; 2018 Jan; 18(1):602-609. PubMed ID: 29206471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connecting Metallic Nanoparticles by Optical Printing.
    Gargiulo J; Cerrota S; Cortés E; Violi IL; Stefani FD
    Nano Lett; 2016 Feb; 16(2):1224-9. PubMed ID: 26745330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical selection and sorting of nanoparticles according to quantum mechanical properties.
    Fujiwara H; Yamauchi K; Wada T; Ishihara H; Sasaki K
    Sci Adv; 2021 Jan; 7(3):. PubMed ID: 33523883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical Processing of DNA-Programmed Nanoparticle Superlattices.
    Zornberg LZ; Gabrys PA; Macfarlane RJ
    Nano Lett; 2019 Nov; 19(11):8074-8081. PubMed ID: 31602981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanometric control of the distance between plasmonic nanoparticles using optical forces.
    Sepúlveda B; Alegret J; Käll M
    Opt Express; 2007 Oct; 15(22):14914-20. PubMed ID: 19550770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light at work: the use of optical forces for particle manipulation, sorting, and analysis.
    Jonás A; Zemánek P
    Electrophoresis; 2008 Dec; 29(24):4813-51. PubMed ID: 19130566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties.
    Messina E; Cavallaro E; Cacciola A; Iatì MA; Gucciardi PG; Borghese F; Denti P; Saija R; Compagnini G; Meneghetti M; Amendola V; Maragò OM
    ACS Nano; 2011 Feb; 5(2):905-13. PubMed ID: 21207989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opto-thermophoretic separation and trapping of plasmonic nanoparticles.
    Setoura K; Tsuji T; Ito S; Kawano S; Miyasaka H
    Nanoscale; 2019 Nov; 11(44):21093-21102. PubMed ID: 31402358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation of passive optical sorting of plasmon nanoparticles.
    Ploschner M; Mazilu M; Cižmár T; Dholakia K
    Opt Express; 2011 Jul; 19(15):13922-33. PubMed ID: 21934752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomically precise metal nanoclusters: stable sizes and optical properties.
    Jin R
    Nanoscale; 2015 Feb; 7(5):1549-65. PubMed ID: 25532730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.