These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 29939817)

  • 21. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions.
    Hasanuzzaman M; Alhaithloul HAS; Parvin K; Bhuyan MHMB; Tanveer M; Mohsin SM; Nahar K; Soliman MH; Mahmud JA; Fujita M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.
    Nath M; Tuteja N
    Protoplasma; 2016 May; 253(3):767-786. PubMed ID: 26085375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance.
    Alcázar R; Altabella T; Marco F; Bortolotti C; Reymond M; Koncz C; Carrasco P; Tiburcio AF
    Planta; 2010 May; 231(6):1237-49. PubMed ID: 20221631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutathione in plants: an integrated overview.
    Noctor G; Mhamdi A; Chaouch S; Han Y; Neukermans J; Marquez-Garcia B; Queval G; Foyer CH
    Plant Cell Environ; 2012 Feb; 35(2):454-84. PubMed ID: 21777251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation.
    Sati H; Chinchkar AV; Kataria P; Pareek S
    Physiol Plant; 2024; 176(3):e14413. PubMed ID: 38924553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hormonal control of sulfate uptake and assimilation.
    Koprivova A; Kopriva S
    Plant Mol Biol; 2016 Aug; 91(6):617-27. PubMed ID: 26810064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules.
    Kabała K; Janicka M
    Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants.
    Mukherjee S
    Plant Physiol Biochem; 2018 Nov; 132():33-45. PubMed ID: 30172851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.
    Arora D; Jain P; Singh N; Kaur H; Bhatla SC
    Free Radic Res; 2016; 50(3):291-303. PubMed ID: 26554526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of reactive oxygen species and hormone signaling during abiotic stress.
    Devireddy AR; Zandalinas SI; Fichman Y; Mittler R
    Plant J; 2021 Jan; 105(2):459-476. PubMed ID: 33015917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators.
    Khan MIR; Ashfaque F; Chhillar H; Irfan M; Khan NA
    Plant Physiol Biochem; 2021 May; 162():36-47. PubMed ID: 33667965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses.
    Kosakivska IV; Vedenicheva NP; Babenko LM; Voytenko LV; Romanenko KO; Vasyuk VA
    Mol Biol Rep; 2022 Jan; 49(1):617-628. PubMed ID: 34669126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses.
    Khan MSS; Ahmed S; Ikram AU; Hannan F; Yasin MU; Wang J; Zhao B; Islam F; Chen J
    Redox Biol; 2023 Aug; 64():102805. PubMed ID: 37406579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nitric oxide in tolerance of plants to abiotic stress.
    Siddiqui MH; Al-Whaibi MH; Basalah MO
    Protoplasma; 2011 Jul; 248(3):447-55. PubMed ID: 20827494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.
    Fang H; Liu Z; Jin Z; Zhang L; Liu D; Pei Y
    Environ Pollut; 2016 Jun; 213():870-877. PubMed ID: 27038574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The emerging key role of reactive sulfur species in abiotic stress tolerance in plants.
    Alvi AF; Iqbal N; Albaqami M; Khan NA
    Physiol Plant; 2023; 175(3):e13945. PubMed ID: 37265249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress.
    Ahmad B; Mukarram M; Choudhary S; Petrík P; Dar TA; Khan MMA
    Plant Physiol Biochem; 2024 Mar; 208():108504. PubMed ID: 38507841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions.
    Singh S; Kumar V; Kapoor D; Kumar S; Singh S; Dhanjal DS; Datta S; Samuel J; Dey P; Wang S; Prasad R; Singh J
    Physiol Plant; 2020 Feb; 168(2):301-317. PubMed ID: 31264712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.