These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29940007)

  • 21. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disassociation between preprandial gut peptide release and food-anticipatory activity.
    Dailey MJ; Stingl KC; Moran TH
    Endocrinology; 2012 Jan; 153(1):132-42. PubMed ID: 22128024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock.
    Storch KF; Weitz CJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6808-13. PubMed ID: 19366674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serotonin suppresses food anticipatory activity and synchronizes the food-entrainable oscillator during time-restricted feeding.
    Rozenblit-Susan S; Chapnik N; Genzer Y; Froy O
    Behav Brain Res; 2016 Jan; 297():150-4. PubMed ID: 26467604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice.
    Mercken EM; Hu J; Krzysik-Walker S; Wei M; Li Y; McBurney MW; de Cabo R; Longo VD
    Aging Cell; 2014 Feb; 13(1):193-6. PubMed ID: 23941528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SIRT1 Relays Nutritional Inputs to the Circadian Clock Through the Sf1 Neurons of the Ventromedial Hypothalamus.
    Orozco-Solis R; Ramadori G; Coppari R; Sassone-Corsi P
    Endocrinology; 2015 Jun; 156(6):2174-84. PubMed ID: 25763637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secretin receptor-deficient mice exhibit robust food anticipatory activity.
    Sugiyama M; Nishijima I; Nakamura W; Nakamura TJ
    Neurosci Lett; 2022 Feb; 772():136462. PubMed ID: 35051436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity.
    Dietrich MO; Antunes C; Geliang G; Liu ZW; Borok E; Nie Y; Xu AW; Souza DO; Gao Q; Diano S; Gao XB; Horvath TL
    J Neurosci; 2010 Sep; 30(35):11815-25. PubMed ID: 20810901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.
    Cordeiro A; de Souza LL; Oliveira LS; Faustino LC; Santiago LA; Bloise FF; Ortiga-Carvalho TM; Almeida NA; Pazos-Moura CC
    J Endocrinol; 2013 Feb; 216(2):181-93. PubMed ID: 23151359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Food cues and ghrelin recruit the same neuronal circuitry.
    van der Plasse G; Merkestein M; Luijendijk MC; van der Roest M; Westenberg HG; Mulder AB; Adan RA
    Int J Obes (Lond); 2013 Jul; 37(7):1012-9. PubMed ID: 23069665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice.
    Ma L; Dong W; Wang R; Li Y; Xu B; Zhang J; Zhao Z; Wang Y
    Brain Res Bull; 2015 Jul; 116():67-72. PubMed ID: 26135885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging.
    Chang HC; Guarente L
    Cell; 2013 Jun; 153(7):1448-60. PubMed ID: 23791176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting effects of leptin on food anticipatory and total locomotor activity.
    Ribeiro AC; Ceccarini G; Dupré C; Friedman JM; Pfaff DW; Mark AL
    PLoS One; 2011; 6(8):e23364. PubMed ID: 21853117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus.
    Satoh A; Brace CS; Ben-Josef G; West T; Wozniak DF; Holtzman DM; Herzog ED; Imai S
    J Neurosci; 2010 Jul; 30(30):10220-32. PubMed ID: 20668205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolating neural correlates of the pacemaker for food anticipation.
    Blum ID; Lamont EW; Rodrigues T; Abizaid A
    PLoS One; 2012; 7(4):e36117. PubMed ID: 22558352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of graded levels of calorie restriction: V. Impact of short term calorie and protein restriction on physical activity in the C57BL/6 mouse.
    Mitchell SE; Delville C; Konstantopedos P; Derous D; Green CL; Wang Y; Han JD; Promislow DE; Douglas A; Chen L; Lusseau D; Speakman JR
    Oncotarget; 2016 Apr; 7(15):19147-70. PubMed ID: 27007156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the role of locomotor sensitization in the circadian food entrainment pathway.
    Opiol H; de Zavalia N; Delorme T; Solis P; Rutherford S; Shalev U; Amir S
    PLoS One; 2017; 12(3):e0174113. PubMed ID: 28301599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity.
    LeSauter J; Balsam PD; Simpson EH; Silver R
    Eur J Neurosci; 2020 Jan; 51(1):71-81. PubMed ID: 30362616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice.
    Pitts S; Perone E; Silver R
    Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R57-67. PubMed ID: 12649127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.
    Gavrila AM; Hood S; Robinson B; Amir S
    PLoS One; 2017; 12(6):e0179370. PubMed ID: 28594962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.