BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29940105)

  • 21. Mechanism of feedback allosteric inhibition of ATP phosphoribosyltransferase.
    Pedreño S; Pisco JP; Larrouy-Maumus G; Kelly G; de Carvalho LP
    Biochemistry; 2012 Oct; 51(40):8027-38. PubMed ID: 22989207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence against a covalent intermediate in the adenosine triphosphate phosphoribosyltransferase reaction of histidine biosynthesis.
    Brashear WT; Parsons SM
    J Biol Chem; 1975 Sep; 250(17):6885-90. PubMed ID: 1099098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncoupling conformational states from activity in an allosteric enzyme.
    Pisco JP; de Chiara C; Pacholarz KJ; Garza-Garcia A; Ogrodowicz RW; Walker PA; Barran PE; Smerdon SJ; de Carvalho LPS
    Nat Commun; 2017 Aug; 8(1):203. PubMed ID: 28781362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic mechanism of OMP synthase: a slow physical step following group transfer limits catalytic rate.
    Wang GP; Lundegaard C; Jensen KF; Grubmeyer C
    Biochemistry; 1999 Jan; 38(1):275-83. PubMed ID: 9890908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The quaternary structure of the HisZ-HisG N-1-(5'-phosphoribosyl)-ATP transferase from Lactococcus lactis.
    Bovee ML; Champagne KS; Demeler B; Francklyn CS
    Biochemistry; 2002 Oct; 41(39):11838-46. PubMed ID: 12269828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus.
    Christoffersen S; Kadziola A; Johansson E; Rasmussen M; Willemoës M; Jensen KF
    J Mol Biol; 2009 Oct; 393(2):464-77. PubMed ID: 19683539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic mechanism of adenine phosphoribosyltransferase from Leishmania donovani.
    Bashor C; Denu JM; Brennan RG; Ullman B
    Biochemistry; 2002 Mar; 41(12):4020-31. PubMed ID: 11900545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthetic direction substrate kinetics and product inhibition studies on the first enzyme of histidine biosynthesis, adenosine triphosphate phosphoribosyltransferase.
    Morton DP; Parsons SM
    Arch Biochem Biophys; 1976 Aug; 175(2):677-86. PubMed ID: 183121
    [No Abstract]   [Full Text] [Related]  

  • 30. Catalytic site interactions in yeast OMP synthase.
    Hansen MR; Barr EW; Jensen KF; Willemoës M; Grubmeyer C; Winther JR
    Arch Biochem Biophys; 2014 Jan; 542():28-38. PubMed ID: 24262852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry.
    Xu Y; Eads J; Sacchettini JC; Grubmeyer C
    Biochemistry; 1997 Mar; 36(12):3700-12. PubMed ID: 9132023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of histidyl-tRNA-adenosine triphosphate phosphoribosyltransferase complex formation by histidine and by guanosine tetraphosphate.
    Kleeman JE; Parsons SM
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1535-7. PubMed ID: 323857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stopped flow kinetic studies of adenosine triphosphate phosphoribosyl transferase, the first enzyme in the histidine biosynthesis of Escherichia coli.
    Dall-Larsen T
    Int J Biochem; 1988; 20(8):811-5. PubMed ID: 3049184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase.
    Willemoës M; Hove-Jensen B
    Biochemistry; 1997 Apr; 36(16):5078-83. PubMed ID: 9125530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic mechanism of fully activated S6K1 protein kinase.
    Keshwani MM; Harris TK
    J Biol Chem; 2008 May; 283(18):11972-80. PubMed ID: 18326039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The mechanism of adenine nucleotide biosynthesis from adenine in Corynebacterium species].
    Pinuev IO; Tsyrenov VZh; Bezborodov AM
    Prikl Biokhim Mikrobiol; 1979; 15(1):24-30. PubMed ID: 95886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase.
    Sun P; Bai T; Ma T; Ding J
    Sci Rep; 2020 Apr; 10(1):6225. PubMed ID: 32277159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two ATP phosphoribosyltransferase isozymes of Geobacter sulfurreducens contribute to growth in the presence or absence of histidine and under nitrogen fixation conditions.
    Aklujkar M
    Can J Microbiol; 2011 Jul; 57(7):547-58. PubMed ID: 21774583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
    Lew J; Taylor SS; Adams JA
    Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.