These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1136 related articles for article (PubMed ID: 29940185)

  • 1. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13.
    Yang H; Patel DJ
    Nat Chem Biol; 2024 Jun; 20(6):673-688. PubMed ID: 38702571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
    East-Seletsky A; O'Connell MR; Knight SC; Burstein D; Cate JH; Tjian R; Doudna JA
    Nature; 2016 Oct; 538(7624):270-273. PubMed ID: 27669025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.
    Meeske AJ; Marraffini LA
    Mol Cell; 2018 Sep; 71(5):791-801.e3. PubMed ID: 30122537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of specific RNA knockdown in mammalian cells with CRISPR-Cas13.
    Burris BJD; Molina Vargas AM; Park BJ; O'Connell MR
    Methods; 2022 Oct; 206():58-68. PubMed ID: 35987443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family.
    Liu L; Pei DS
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
    Terns MP
    Mol Cell; 2018 Nov; 72(3):404-412. PubMed ID: 30388409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
    Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA
    Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms.
    Ganguly C; Rostami S; Long K; Aribam SD; Rajan R
    J Biol Chem; 2024 Jun; 300(6):107295. PubMed ID: 38641067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
    East-Seletsky A; O'Connell MR; Burstein D; Knott GJ; Doudna JA
    Mol Cell; 2017 May; 66(3):373-383.e3. PubMed ID: 28475872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d.
    Zhang B; Ye Y; Ye W; Perčulija V; Jiang H; Chen Y; Li Y; Chen J; Lin J; Wang S; Chen Q; Han YS; Ouyang S
    Nat Commun; 2019 Jun; 10(1):2544. PubMed ID: 31186424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.
    Zhang C; Konermann S; Brideau NJ; Lotfy P; Wu X; Novick SJ; Strutzenberg T; Griffin PR; Hsu PD; Lyumkis D
    Cell; 2018 Sep; 175(1):212-223.e17. PubMed ID: 30241607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems.
    Perčulija V; Lin J; Zhang B; Ouyang S
    Adv Sci (Weinh); 2021 Jul; 8(13):2004685. PubMed ID: 34254038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
    Abudayyeh OO; Gootenberg JS; Konermann S; Joung J; Slaymaker IM; Cox DB; Shmakov S; Makarova KS; Semenova E; Minakhin L; Severinov K; Regev A; Lander ES; Koonin EV; Zhang F
    Science; 2016 Aug; 353(6299):aaf5573. PubMed ID: 27256883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas Effector Complex.
    Takeshita D; Sato M; Inanaga H; Numata T
    J Mol Biol; 2019 Feb; 431(4):748-763. PubMed ID: 30639408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9.
    Yan F; Wang W; Zhang J
    Cell Biol Toxicol; 2019 Dec; 35(6):489-492. PubMed ID: 31468291
    [No Abstract]   [Full Text] [Related]  

  • 19. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity.
    Jia N; Mo CY; Wang C; Eng ET; Marraffini LA; Patel DJ
    Mol Cell; 2019 Jan; 73(2):264-277.e5. PubMed ID: 30503773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells.
    Méndez-Mancilla A; Wessels HH; Legut M; Kadina A; Mabuchi M; Walker J; Robb GB; Holden K; Sanjana NE
    Cell Chem Biol; 2022 Feb; 29(2):321-327.e4. PubMed ID: 34343484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.