These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29940299)

  • 21. Powder die filling under gravity and suction fill mechanisms.
    Baserinia R; Sinka IC
    Int J Pharm; 2019 May; 563():135-155. PubMed ID: 30742983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of material properties and process parameters on die filling at varying throughputs: A PLS-model-based analysis.
    De Souter L; Nitert BJ; Waeytens R; Kumar A; De Beer T
    Int J Pharm; 2024 Jun; 661():124357. PubMed ID: 38897490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time monitoring of pharmaceutical properties of medical tablets during direct tableting process by hybrid tableting process parameter-time profiles.
    Saito S; Hattori Y; Sakamoto T; Otsuka M
    Biomed Mater Eng; 2020; 30(5-6):509-524. PubMed ID: 31771033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous measurement of die wall pressure in a rotary tablet machine.
    Imayoshi Y; Ohsaki S; Nakamura H; Watano S
    Int J Pharm; 2022 Nov; 627():122251. PubMed ID: 36191814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental investigation and modelling of tensile strength of pharmaceutical tablets based on shear force applied by feed frame paddles.
    Furukawa R; Singh R; Ierapetritou M
    Int J Pharm; 2021 Sep; 606():120908. PubMed ID: 34298106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data on rotary die filling performance of various pharmaceutical powders.
    Tang X; Zhang L; Wu ZF; Sun P; Wu CY
    Data Brief; 2020 Oct; 32():106220. PubMed ID: 32923542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An experimental study of die filling of pharmaceutical powders using a rotary die filling system.
    Zakhvatayeva A; Zhong W; Makroo HA; Hare C; Wu CY
    Int J Pharm; 2018 Dec; 553(1-2):84-96. PubMed ID: 30321642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation and Risk Analysis in Tablet Press Control for Continuous Manufacturing of Solid Dosage via Direct Compaction.
    Su Q; Bommireddy Y; Gonzalez M; Reklaitis GV; Nagy ZK
    Int Symp Process Syst Eng; 2018; 44():679-684. PubMed ID: 36790947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Residence time and mixing capacity of a rotary tablet press feed frame.
    Zimmermann M; Thommes M
    Drug Dev Ind Pharm; 2021 May; 47(5):790-798. PubMed ID: 34042546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-line monitoring of the drug content of powder mixtures and tablets by near-infrared spectroscopy during the continuous direct compression tableting process.
    Järvinen K; Hoehe W; Järvinen M; Poutiainen S; Juuti M; Borchert S
    Eur J Pharm Sci; 2013 Mar; 48(4-5):680-8. PubMed ID: 23313622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Powder flow during linear and rotary die filling.
    Zhong WZ; Zakhvatayeva A; Zhang L; Wu CY
    Int J Pharm; 2021 Jun; 602():120654. PubMed ID: 33915183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release.
    Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the powder behavior and the residence time distribution within a production scale rotary tablet press.
    Dülle M; Özcoban H; Leopold CS
    Eur J Pharm Sci; 2018 Dec; 125():205-214. PubMed ID: 30312745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the feed frame design on the powder behavior and the residence time distribution.
    Dülle M; Özcoban H; Leopold CS
    Int J Pharm; 2019 Jun; 565():523-532. PubMed ID: 31102806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Externally Applied Lower Punch Vibration and its Effects on Tablet Manufacturing.
    Kalies A; Özcoban H; Leopold CS
    Pharm Res; 2019 Oct; 36(12):173. PubMed ID: 31659476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameter optimization in a continuous direct compression process of commercially batch-produced bisoprolol tablets.
    Lyytikäinen J; Stasiak P; Kubelka T; Olenius T; Korhonen O; Ketolainen J; Ervasti T
    Int J Pharm; 2022 Nov; 628():122355. PubMed ID: 36341918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Simple In-Die Method for Determination of Capping Tendency in Rotary Tableting Machines.
    Imayoshi Y; Ohsaki S; Nakamura H; Watano S
    Chem Pharm Bull (Tokyo); 2023 Jul; 71(7):566-575. PubMed ID: 37088559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous direct compression as manufacturing platform for sustained release tablets.
    Van Snick B; Holman J; Cunningham C; Kumar A; Vercruysse J; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2017 Mar; 519(1-2):390-407. PubMed ID: 28069390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Particle and Equipment Properties on Residence Time Distribution of Pharmaceutical Excipients in Rotary Tablet Presses.
    Puckhaber D; Eichler S; Kwade A; Finke JH
    Pharmaceutics; 2020 Mar; 12(3):. PubMed ID: 32245219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residence time distribution modelling and in line monitoring of drug concentration in a tablet press feed frame containing dead zones.
    Tanimura S; Singh R; Román-Ospino AD; Ierapetritou M
    Int J Pharm; 2021 Jan; 592():120048. PubMed ID: 33161037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.