These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 29940404)
1. Predicting post-mortem meat quality in porcine longissimus lumborum using Raman, near infrared and fluorescence spectroscopy. Andersen PV; Wold JP; Gjerlaug-Enger E; Veiseth-Kent E Meat Sci; 2018 Nov; 145():94-100. PubMed ID: 29940404 [TBL] [Abstract][Full Text] [Related]
2. Prediction of pork quality at the slaughter line using a portable Raman device. Scheier R; Scheeder M; Schmidt H Meat Sci; 2015 May; 103():96-103. PubMed ID: 25647519 [TBL] [Abstract][Full Text] [Related]
3. Analyzing μ-Calpain induced proteolysis in a myofibril model system with vibrational and fluorescence spectroscopy. Andersen PV; Wold JP; Veiseth-Kent E Meat Sci; 2018 May; 139():239-246. PubMed ID: 29475101 [TBL] [Abstract][Full Text] [Related]
4. Analyzing pH-induced changes in a myofibril model system with vibrational and fluorescence spectroscopy. Andersen PV; Veiseth-Kent E; Wold JP Meat Sci; 2017 Mar; 125():1-9. PubMed ID: 27871035 [TBL] [Abstract][Full Text] [Related]
5. Prediction of water holding capacity and pH in porcine longissimus lumborum using Raman spectroscopy. Andersen PV; Afseth NK; Gjerlaug-Enger E; Wold JP Meat Sci; 2021 Feb; 172():108357. PubMed ID: 33130356 [TBL] [Abstract][Full Text] [Related]
6. Short communication: Long term performance of near infrared spectroscopy to predict intramuscular fat content in New Zealand lamb. Hitchman S; Johnson P; Bain W; Craigie CR; Reis MM Meat Sci; 2021 Nov; 181():108376. PubMed ID: 33423830 [TBL] [Abstract][Full Text] [Related]
7. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy. Liao YT; Fan YX; Cheng F Meat Sci; 2010 Dec; 86(4):901-7. PubMed ID: 20728281 [TBL] [Abstract][Full Text] [Related]
8. Determination of omega-6 and omega-3 fatty acids in pork adipose tissue with nondestructive Raman and fourier transform infrared spectroscopy. Olsen EF; Rukke EO; Egelandsdal B; Isaksson T Appl Spectrosc; 2008 Sep; 62(9):968-74. PubMed ID: 18801235 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics. Cama-Moncunill R; Cafferky J; Augier C; Sweeney T; Allen P; Ferragina A; Sullivan C; Cromie A; Hamill RM Meat Sci; 2020 Sep; 167():108157. PubMed ID: 32361332 [TBL] [Abstract][Full Text] [Related]
10. Predicting pork quality using Vis/NIR spectroscopy. Balage JM; da Luz E Silva S; Gomide CA; Bonin Mde N; Figueira AC Meat Sci; 2015 Oct; 108():37-43. PubMed ID: 26021598 [TBL] [Abstract][Full Text] [Related]
12. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Nian Y; Zhao M; O'Donnell CP; Downey G; Kerry JP; Allen P Food Res Int; 2017 Sep; 99(Pt 1):778-789. PubMed ID: 28784544 [TBL] [Abstract][Full Text] [Related]
13. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review]. Tao LL; Yang XJ; Deng JM; Zhang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369 [TBL] [Abstract][Full Text] [Related]
14. Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Robert C; Jessep W; Sutton JJ; Hicks TM; Loeffen M; Farouk M; Ward JF; Bain WE; Craigie CR; Fraser-Miller SJ; Gordon KC Food Chem; 2021 Nov; 361():130154. PubMed ID: 34077882 [TBL] [Abstract][Full Text] [Related]
15. Rapid discrimination of enhanced quality pork by visible and near infrared spectroscopy. Prieto N; Juárez M; Larsen IL; López-Campos Ó; Zijlstra RT; Aalhus JL Meat Sci; 2015 Dec; 110():76-84. PubMed ID: 26188360 [TBL] [Abstract][Full Text] [Related]
16. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Fowler SM; Schmidt H; van de Ven R; Hopkins DL Meat Sci; 2018 Apr; 138():53-58. PubMed ID: 29331862 [TBL] [Abstract][Full Text] [Related]
17. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef. Zhao M; Nian Y; Allen P; Downey G; Kerry JP; O'Donnell CP Food Res Int; 2018 May; 107():27-40. PubMed ID: 29580485 [TBL] [Abstract][Full Text] [Related]
18. Preliminary investigation of the use of Raman spectroscopy to predict beef spoilage in different types of packaging. Yang H; Hopkins DL; Zhang Y; Zhu L; Dong P; Wang X; Mao Y; Luo X; Fowler SM Meat Sci; 2020 Jul; 165():108136. PubMed ID: 32272341 [TBL] [Abstract][Full Text] [Related]
19. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Ma J; Sun DW; Pu H Food Chem; 2016 Apr; 197(Pt A):848-54. PubMed ID: 26617026 [TBL] [Abstract][Full Text] [Related]
20. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Barbin DF; ElMasry G; Sun DW; Allen P Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]