These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 29940440)
41. Bringing ecosystem services into integrated water resources management. Liu S; Crossman ND; Nolan M; Ghirmay H J Environ Manage; 2013 Nov; 129():92-102. PubMed ID: 23900082 [TBL] [Abstract][Full Text] [Related]
42. Scales and Historical Evolution: Methods to Reveal the Relationships between Ecosystem Service Bundles and Socio-Ecological Drivers-A Case Study of Dalian City, China. Yan X; Li X; Liu C; Li J; Zhong J Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36142040 [TBL] [Abstract][Full Text] [Related]
43. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China. Hu Y; Peng J; Liu Y; Tian L Sci Total Environ; 2018 Jun; 625():849-860. PubMed ID: 29306828 [TBL] [Abstract][Full Text] [Related]
44. Spatial and temporal patterns of supply and demand risk for ecosystem services in the Weihe River Main Stream, NW China. Men D; Pan J; Sun X Environ Sci Pollut Res Int; 2023 Mar; 30(13):36952-36966. PubMed ID: 36564691 [TBL] [Abstract][Full Text] [Related]
45. Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing. Bai Y; Ouyang Z; Zheng H; Li X; Zhuang C; Jiang B J Environ Sci (China); 2012; 24(3):419-26. PubMed ID: 22655354 [TBL] [Abstract][Full Text] [Related]
46. A conservation planning framework for China's national key ecological function area based on ecological risk assessment. Pan F; Song M; Wan Q; Yuan L Environ Monit Assess; 2022 Jan; 194(2):74. PubMed ID: 34997868 [TBL] [Abstract][Full Text] [Related]
47. Cross-scale and integrative prioritization of multi-functionality in large river floodplains. Tschikof M; Stammel B; Weigelhofer G; Bondar-Kunze E; Costea G; Pusch M; Srdević Z; Benka P; Vizi DB; Borgs T; Hein T J Environ Manage; 2024 May; 358():120899. PubMed ID: 38636421 [TBL] [Abstract][Full Text] [Related]
48. Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Li G; Fang C; Wang S Sci Total Environ; 2016 Mar; 545-546():609-20. PubMed ID: 26760280 [TBL] [Abstract][Full Text] [Related]
49. Evaluating Ecosystem Services Supply and Demand Dynamics and Ecological Zoning Management in Wuhan, China. Chen F; Li L; Niu J; Lin A; Chen S; Hao L Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31269654 [TBL] [Abstract][Full Text] [Related]
50. Combining the species-area-habitat relationship and environmental cluster analysis to set conservation priorities: a study in the Zhoushan Archipelago, China. Chen YH Conserv Biol; 2009 Jun; 23(3):537-45. PubMed ID: 18983599 [TBL] [Abstract][Full Text] [Related]
51. Who is contributing where? Predicting ecosystem service multifunctionality for shellfish species through ecological principles. Rullens V; Townsend M; Lohrer AM; Stephenson F; Pilditch CA Sci Total Environ; 2022 Feb; 808():152147. PubMed ID: 34864024 [TBL] [Abstract][Full Text] [Related]
52. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Ferraro PJ; Hanauer MM; Miteva DA; Nelson JL; Pattanayak SK; Nolte C; Sims KR Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7420-5. PubMed ID: 26082549 [TBL] [Abstract][Full Text] [Related]
53. The impact of large-scale ecological restoration projects on trade-offs/synergies and clusters of ecosystem services. Lyu F; Tang J; Olhnuud A; Hao F; Gong C J Environ Manage; 2024 Aug; 365():121591. PubMed ID: 38941856 [TBL] [Abstract][Full Text] [Related]
54. Focusing Conservation Efforts on Ecosystem Service Supply May Increase Vulnerability of Socio-Ecological Systems. Laterra P; Barral P; Carmona A; Nahuelhual L PLoS One; 2016; 11(5):e0155019. PubMed ID: 27167737 [TBL] [Abstract][Full Text] [Related]
55. Identifying priority areas for freshwater supply conservation integrating multi-scale freshwater flows. Xu Y; Lan H; Wang B; Zhao X; Li D; Yang Y; Xie Y; Sun W J Environ Manage; 2023 Oct; 344():118722. PubMed ID: 37542864 [TBL] [Abstract][Full Text] [Related]
56. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949. Wang F; Mu X; Li R; Fleskens L; Stringer LC; Ritsema CJ Sci Total Environ; 2015 Mar; 508():166-77. PubMed ID: 25478653 [TBL] [Abstract][Full Text] [Related]
57. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Wang Z; Lechner AM; Yang Y; Baumgartl T; Wu J Sci Total Environ; 2020 May; 717():137214. PubMed ID: 32062237 [TBL] [Abstract][Full Text] [Related]
58. Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China. Wang B; Tang H; Zhang Q; Cui F Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32717996 [TBL] [Abstract][Full Text] [Related]
59. Addressing disturbance risk to mountain forest ecosystem services. Stritih A; Bebi P; Rossi C; Grêt-Regamey A J Environ Manage; 2021 Oct; 296():113188. PubMed ID: 34225045 [TBL] [Abstract][Full Text] [Related]