These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29940739)

  • 1. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility and settling rate of agglomerates of polydisperse nanoparticles.
    Spyrogianni A; Karadima KS; Goudeli E; Mavrantzas VG; Pratsinis SE
    J Chem Phys; 2018 Feb; 148(6):064703. PubMed ID: 29448768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.
    Eggersdorfer ML; Gröhn AJ; Sorensen CM; McMurry PH; Pratsinis SE
    J Colloid Interface Sci; 2012 Dec; 387(1):12-23. PubMed ID: 22959835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.
    Eggersdorfer ML; Kadau D; Herrmann HJ; Pratsinis SE
    J Aerosol Sci; 2012 Apr; 46():7-19. PubMed ID: 23658467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of coating of dicarboxylic acids on the mass-mobility relationship of soot particles.
    Xue H; Khalizov AF; Wang L; Zheng J; Zhang R
    Environ Sci Technol; 2009 Apr; 43(8):2787-92. PubMed ID: 19475951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coagulation of Agglomerates Consisting of Polydisperse Primary Particles.
    Goudeli E; Eggersdorfer ML; Pratsinis SE
    Langmuir; 2016 Sep; 32(36):9276-85. PubMed ID: 27536889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Limitations of Aerosol Separation by a Tandem Differential Mobility Analyzer-Aerosol Particle Mass Analyzer.
    Radney JG; Zangmeister CD
    Aerosol Sci Technol; 2016; 50(2):160-172. PubMed ID: 28663667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.
    Khalizov AF; Xue H; Wang L; Zheng J; Zhang R
    J Phys Chem A; 2009 Feb; 113(6):1066-74. PubMed ID: 19146408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.
    Ku BK; Kulkarni P
    J Aerosol Sci; 2012 May; 47():100-110. PubMed ID: 26692585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime.
    Kelesidis GA; Kholghy MR
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Dependence of the Physical Characteristics of Particles Containing Refractory Black Carbon in Diesel Vehicle Exhaust.
    Han C; Li SM; Liu P; Lee P
    Environ Sci Technol; 2019 Jan; 53(1):137-145. PubMed ID: 30516049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates.
    Wengeler R; Teleki A; Vetter M; Pratsinis SE; Nirschl H
    Langmuir; 2006 May; 22(11):4928-35. PubMed ID: 16700577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical Aging Induces Changes in the Effective Densities, Morphologies, and Optical Properties of Combustion Aerosol Particles.
    Leskinen J; Hartikainen A; Väätäinen S; Ihalainen M; Virkkula A; Mesceriakovas A; Tiitta P; Miettinen M; Lamberg H; Czech H; Yli-Pirilä P; Tissari J; Jakobi G; Zimmermann R; Sippula O
    Environ Sci Technol; 2023 Apr; 57(13):5137-5148. PubMed ID: 36944040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Coating-Induced Soot Aggregate Restructuring and Primary Particle Number.
    Leung KK; Schnitzler EG; Dastanpour R; Rogak SN; Jäger W; Olfert JS
    Environ Sci Technol; 2017 Aug; 51(15):8376-8383. PubMed ID: 28661663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation and bond strength of airborne diesel soot agglomerates.
    Rothenbacher S; Messerer A; Kasper G
    Part Fibre Toxicol; 2008 Jun; 5():9. PubMed ID: 18533015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Structure of Agglomerates consisting of Polydisperse Particles.
    Eggersdorfer ML; Pratsinis SE
    Aerosol Sci Technol; 2012 Mar; 46(3):347-353. PubMed ID: 23729953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to determine the fractal dimension of diesel soot agglomerates.
    Lapuerta M; Ballesteros R; Martos FJ
    J Colloid Interface Sci; 2006 Nov; 303(1):149-58. PubMed ID: 16934823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.