BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29940791)

  • 1. Phagophores evolve from recycling endosomes.
    Puri C; Vicinanza M; Rubinsztein DC
    Autophagy; 2018; 14(8):1475-1477. PubMed ID: 29940791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A.
    Puri C; Vicinanza M; Ashkenazi A; Gratian MJ; Zhang Q; Bento CF; Renna M; Menzies FM; Rubinsztein DC
    Dev Cell; 2018 Apr; 45(1):114-131.e8. PubMed ID: 29634932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A location, location, location mutation impairs DNM2-mediated release of nascent autophagosomes from recycling endosomes.
    Puri C; Rubinsztein DC
    Autophagy; 2020 Jul; 16(7):1353-1354. PubMed ID: 32453967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis.
    Puri C; Renna M; Bento CF; Moreau K; Rubinsztein DC
    Autophagy; 2014 Jan; 10(1):182-4. PubMed ID: 24257061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian autophagosomes form from finger-like phagophores.
    Puri C; Gratian MJ; Rubinsztein DC
    Dev Cell; 2023 Dec; 58(23):2746-2760.e5. PubMed ID: 37683632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian phagophores with finger-like shapes emerge from recycling endosomes.
    Puri C; Rubinsztein DC
    Autophagy; 2024 May; 20(5):1189-1191. PubMed ID: 38095212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transiently expressed ATG16L1 inhibits autophagosome biogenesis and aberrantly targets RAB11-positive recycling endosomes.
    Li J; Chen Z; Stang MT; Gao W
    Autophagy; 2017 Feb; 13(2):345-358. PubMed ID: 27875067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein.
    Bansal M; Moharir SC; Sailasree SP; Sirohi K; Sudhakar C; Sarathi DP; Lakshmi BJ; Buono M; Kumar S; Swarup G
    J Biol Chem; 2018 Jan; 293(1):132-147. PubMed ID: 29133525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DNM2 Centronuclear Myopathy Mutation Reveals a Link between Recycling Endosome Scission and Autophagy.
    Puri C; Manni MM; Vicinanza M; Hilcenko C; Zhu Y; Runwal G; Stamatakou E; Menzies FM; Mamchaoui K; Bitoun M; Rubinsztein DC
    Dev Cell; 2020 Apr; 53(2):154-168.e6. PubMed ID: 32315611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scission, a critical step in autophagosome formation.
    Lei Y; Klionsky DJ
    Autophagy; 2020 Aug; 16(8):1363-1365. PubMed ID: 32544363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local detection of PtdIns3P at autophagosome biogenesis membrane platforms.
    Nascimbeni AC; Codogno P; Morel E
    Autophagy; 2017 Sep; 13(9):1602-1612. PubMed ID: 28813193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation.
    Polson HE; de Lartigue J; Rigden DJ; Reedijk M; Urbé S; Clague MJ; Tooze SA
    Autophagy; 2010 May; 6(4):506-22. PubMed ID: 20505359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement.
    Pinar M; Pantazopoulou A; Peñalva MA
    Autophagy; 2013 Jul; 9(7):1024-43. PubMed ID: 23722157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATG16L1 is equipped with two distinct WIPI2-binding sites to drive autophagy.
    Gong X; Pan L
    Autophagy; 2024 Apr; 20(4):938-940. PubMed ID: 37165562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy.
    Orsi A; Razi M; Dooley HC; Robinson D; Weston AE; Collinson LM; Tooze SA
    Mol Biol Cell; 2012 May; 23(10):1860-73. PubMed ID: 22456507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-2.
    Søreng K; Munson MJ; Lamb CA; Bjørndal GT; Pankiv S; Carlsson SR; Tooze SA; Simonsen A
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29437695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative 3D correlative light and electron microscopy of organelle association during autophagy.
    Takahashi S; Saito C; Koyama-Honda I; Mizushima N
    Cell Struct Funct; 2022 Dec; 47(2):89-99. PubMed ID: 36418108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse autophagosome membrane sources coalesce in recycling endosomes.
    Puri C; Renna M; Bento CF; Moreau K; Rubinsztein DC
    Cell; 2013 Sep; 154(6):1285-99. PubMed ID: 24034251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STING recruits WIPI2 for autophagosome formation.
    Wan W; Liu W
    Autophagy; 2024 Apr; 20(4):928-929. PubMed ID: 37041719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ANKFY1 bridges ATG2A-mediated lipid transfer from endosomes to phagophores.
    Wei B; Fu Y; Li X; Chen F; Zhang Y; Chen H; Tong M; Li L; Pan Y; Zhang S; Chen S; Liu X; Zhong Q
    Cell Discov; 2024 Apr; 10(1):43. PubMed ID: 38622126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.