These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning. Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929 [TBL] [Abstract][Full Text] [Related]
4. RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes. Wang L; Xi Y; Sung S; Qiao H BMC Genomics; 2018 Jul; 19(1):546. PubMed ID: 30029596 [TBL] [Abstract][Full Text] [Related]
5. Seq-ing improved gene expression estimates from microarrays using machine learning. Korir PK; Geeleher P; Seoighe C BMC Bioinformatics; 2015 Sep; 16():286. PubMed ID: 26338512 [TBL] [Abstract][Full Text] [Related]
6. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Franks JM; Cai G; Whitfield ML Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996 [TBL] [Abstract][Full Text] [Related]
7. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data. Ng GYL; Tan SC; Ong CS PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458 [TBL] [Abstract][Full Text] [Related]
8. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data. Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054 [TBL] [Abstract][Full Text] [Related]
9. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously. Foltz SM; Greene CS; Taroni JN Commun Biol; 2023 Feb; 6(1):222. PubMed ID: 36841852 [TBL] [Abstract][Full Text] [Related]
10. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana. Zhang R; Calixto CP; Tzioutziou NA; James AB; Simpson CG; Guo W; Marquez Y; Kalyna M; Patro R; Eyras E; Barta A; Nimmo HG; Brown JW New Phytol; 2015 Oct; 208(1):96-101. PubMed ID: 26111100 [TBL] [Abstract][Full Text] [Related]
11. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling. Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215 [TBL] [Abstract][Full Text] [Related]
12. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Srinivasan S; Leshchyk A; Johnson NT; Korkin D RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794 [TBL] [Abstract][Full Text] [Related]
13. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies. Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247 [TBL] [Abstract][Full Text] [Related]
14. Analysis of RNA-Seq data using self-supervised learning for vital status prediction of colorectal cancer patients. Padegal G; Rao MK; Boggaram Ravishankar OA; Acharya S; Athri P; Srinivasa G BMC Bioinformatics; 2023 Jun; 24(1):241. PubMed ID: 37286944 [TBL] [Abstract][Full Text] [Related]
15. Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM. Alvarez M; Rahmani E; Jew B; Garske KM; Miao Z; Benhammou JN; Ye CJ; Pisegna JR; Pietiläinen KH; Halperin E; Pajukanta P Sci Rep; 2020 Jul; 10(1):11019. PubMed ID: 32620816 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive simulation study on classification of RNA-Seq data. Zararsız G; Goksuluk D; Korkmaz S; Eldem V; Zararsiz GE; Duru IP; Ozturk A PLoS One; 2017; 12(8):e0182507. PubMed ID: 28832679 [TBL] [Abstract][Full Text] [Related]
17. Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq. Liu P; Sanalkumar R; Bresnick EH; Keleş S; Dewey CN Genome Res; 2016 Aug; 26(8):1124-33. PubMed ID: 27405803 [TBL] [Abstract][Full Text] [Related]
18. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Park JW; Tokheim C; Shen S; Xing Y Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975 [TBL] [Abstract][Full Text] [Related]
19. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data. Xiao Y; Wu J; Lin Z; Zhao X Comput Methods Programs Biomed; 2018 Nov; 166():99-105. PubMed ID: 30415723 [TBL] [Abstract][Full Text] [Related]
20. Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. Wang X; Cairns MJ BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S16. PubMed ID: 23734663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]