These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 29941604)

  • 21. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.
    Rauh A; Carl N; Schweins R; Karg M
    Langmuir; 2018 Jan; 34(3):854-867. PubMed ID: 28767251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Blaber MG; Mirkin CA; Schatz GC
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10292-7. PubMed ID: 26240356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete photonic bandgap in a low-index two-dimensional quasicrystalline structure.
    Chistyakov VA; Yafyasov RR; Sayanskiy AD; Sidorenko MS; Rybin MV
    Opt Lett; 2024 Jul; 49(13):3664-3667. PubMed ID: 38950235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.
    Chen G; Wang D; Hong W; Sun L; Zhu Y; Chen X
    Small; 2017 Mar; 13(9):. PubMed ID: 28054428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete photonic bandgaps in 12-fold symmetric quasicrystals.
    Zoorob ME; Charlton MD; Parker GJ; Baumberg JJ; Netti MC
    Nature; 2000 Apr; 404(6779):740-3. PubMed ID: 10783882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of photonic crystals with thermally adjustable pseudo-gaps.
    Li C; Xue Q; Ji Z; Li Y; Zhang H; Li D
    Soft Matter; 2020 Mar; 16(12):3063-3068. PubMed ID: 32133472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-chip natural assembly of silicon photonic bandgap crystals.
    Vlasov YA; Bo XZ; Sturm JC; Norris DJ
    Nature; 2001 Nov; 414(6861):289-93. PubMed ID: 11713524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Symmetry Engineering of Graphene Plasmonic Crystals.
    Yeung KY; Chee J; Song Y; Kong J; Ham D
    Nano Lett; 2015 Aug; 15(8):5001-9. PubMed ID: 26154440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices.
    Weirich J; Laegsgaard J; Wei L; Alkeskjold TT; Wu TX; Wu ST; Bjarklev A
    Opt Express; 2010 Mar; 18(5):4074-87. PubMed ID: 20389422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks.
    Sheng Q; Mao W; Han L; Che S
    Chemistry; 2018 Nov; 24(66):17389-17396. PubMed ID: 29806874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clickable Colloidal Photonic Crystals for Structural Color Pattern.
    Chen J; Liu P; Du X; Xie Z
    Langmuir; 2018 Nov; 34(44):13219-13224. PubMed ID: 30352513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement.
    Lu B; Vegso K; Micky S; Ritz C; Bodik M; Fedoryshyn YM; Siffalovic P; Stemmer A
    ACS Nano; 2023 Jul; 17(13):12774-12787. PubMed ID: 37354449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diamond-lattice photonic crystals assembled from DNA origami.
    Posnjak G; Yin X; Butler P; Bienek O; Dass M; Lee S; Sharp ID; Liedl T
    Science; 2024 May; 384(6697):781-785. PubMed ID: 38753795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2D Photonic Colloidal Liquid Crystals Composed of Self-Assembled Rod-Shaped Particles.
    Kato R; Mikami T; Kato T
    Adv Mater; 2024 Jun; ():e2404396. PubMed ID: 38877780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband self-collimating phenomenon in a low-loss hybrid plasmonic photonic crystal.
    Zhang L; Zhang W; Wang G; Li Z; Du S; Wang W; Wang L; Sun Q; Zhao W
    Appl Opt; 2018 Feb; 57(4):829-833. PubMed ID: 29400747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique.
    Jandieri V; Yasumoto K; Pistora J; Erni D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31514442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles.
    Chu G; Wang X; Yin H; Shi Y; Jiang H; Chen T; Gao J; Qu D; Xu Y; Ding D
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21797-806. PubMed ID: 26378345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.
    Rybin MV; Samusev KB; Lukashenko SY; Kivshar YS; Limonov MF
    Sci Rep; 2016 Aug; 6():30773. PubMed ID: 27491952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings.
    David S; Chelnokov A; Lourtioz JM
    Opt Lett; 2000 Jul; 25(14):1001-3. PubMed ID: 18064253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.