These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors. Zhang Y; Yang H; Zhou Z; Huang K; Yang S; Han G Bioconjug Chem; 2017 Apr; 28(4):869-879. PubMed ID: 28205434 [TBL] [Abstract][Full Text] [Related]
63. Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors. Byun KM; Yoon SJ; Kim D Appl Opt; 2008 Nov; 47(31):5886-92. PubMed ID: 19122730 [TBL] [Abstract][Full Text] [Related]
64. Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Rangnekar A; LaBean TH Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350 [TBL] [Abstract][Full Text] [Related]
65. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Vu CA; Chen WY Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569330 [TBL] [Abstract][Full Text] [Related]
66. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Li M; Li R; Li CM; Wu N Front Biosci (Schol Ed); 2011 Jun; 3(4):1308-31. PubMed ID: 21622273 [TBL] [Abstract][Full Text] [Related]
67. Mix-and-match nanobiosensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures. Liu Y; Kumar S; Taylor RE Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1518. PubMed ID: 29633568 [TBL] [Abstract][Full Text] [Related]
68. Conducting polymer nanostructures and their application in biosensors. Xia L; Wei Z; Wan M J Colloid Interface Sci; 2010 Jan; 341(1):1-11. PubMed ID: 19837415 [TBL] [Abstract][Full Text] [Related]
69. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability. Stassi S; Chiadò A; Cauda V; Palmara G; Canavese G; Laurenti M; Ricciardi C Anal Bioanal Chem; 2017 Apr; 409(10):2615-2625. PubMed ID: 28138742 [TBL] [Abstract][Full Text] [Related]
70. Towards biomedical applications for nucleic acid nanodevices. Simmel FC Nanomedicine (Lond); 2007 Dec; 2(6):817-30. PubMed ID: 18095848 [TBL] [Abstract][Full Text] [Related]
72. Nanomotors for Nucleic Acid, Proteins, Pollutants and Cells Detection. Baeza A; Vallet-Regí M Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29799489 [TBL] [Abstract][Full Text] [Related]
73. Biosensors in the small scale: methods and technology trends. Senveli SU; Tigli O IET Nanobiotechnol; 2013 Mar; 7(1):7-21. PubMed ID: 23705288 [TBL] [Abstract][Full Text] [Related]
74. Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. Park S; Yossifon G ACS Sens; 2020 Apr; 5(4):936-942. PubMed ID: 32141739 [TBL] [Abstract][Full Text] [Related]
75. Sensors made of RNA: tailored ribozymes for detection of small organic molecules, metals, nucleic acids and proteins. Müller S; Strohbach D; Wolf J IEE Proc Nanobiotechnol; 2006 Apr; 153(2):31-40. PubMed ID: 16671821 [TBL] [Abstract][Full Text] [Related]
76. Advances in nano-scaled biosensors for biomedical applications. Wang J; Chen G; Jiang H; Li Z; Wang X Analyst; 2013 Aug; 138(16):4427-35. PubMed ID: 23748648 [TBL] [Abstract][Full Text] [Related]
77. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Liu B; Wang F; Chao J Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992023 [TBL] [Abstract][Full Text] [Related]
78. The application of graphene for in vitro and in vivo electrochemical biosensing. Janegitz BC; Silva TA; Wong A; Ribovski L; Vicentini FC; Taboada Sotomayor MDP; Fatibello-Filho O Biosens Bioelectron; 2017 Mar; 89(Pt 1):224-233. PubMed ID: 27005454 [TBL] [Abstract][Full Text] [Related]