BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 29941801)

  • 1. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
    Parsons M; Bratanov D; Gaston KJ; Gonzalez F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data.
    Vanegas F; Bratanov D; Powell K; Weiss J; Gonzalez F
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.
    Sandino J; Wooler A; Gonzalez F
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications.
    Sousa JJ; Toscano P; Matese A; Di Gennaro SF; Berton A; Gatti M; Poni S; Pádua L; Hruška J; Morais R; Peres E
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explainable identification and mapping of trees using UAV RGB image and deep learning.
    Onishi M; Ise T
    Sci Rep; 2021 Jan; 11(1):903. PubMed ID: 33441689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.
    Sandino J; Pegg G; Gonzalez F; Smith G
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.
    Rowlands G; Purkis S; Riegl B; Metsamaa L; Bruckner A; Renaud P
    Mar Pollut Bull; 2012 Jun; 64(6):1222-37. PubMed ID: 22480935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of coral reefs and their physical environment.
    Mumby PJ; Skirving W; Strong AE; Hardy JT; LeDrew EF; Hochberg EJ; Stumpf RP; David LT
    Mar Pollut Bull; 2004 Feb; 48(3-4):219-28. PubMed ID: 14972573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ningaloo reef: shallow marine habitats mapped using a hyperspectral sensor.
    Kobryn HT; Wouters K; Beckley LE; Heege T
    PLoS One; 2013; 8(7):e70105. PubMed ID: 23922921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Derawan Island's Coral Reefs over Two Decades: A Machine Learning Classification Perspective.
    Manessa MDM; Ummam MAF; Efriana AF; Semedi JM; Ayu F
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm.
    You H; Kim D
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33807293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terrain Characterization via Machine vs. Deep Learning Using Remote Sensing.
    Ewing J; Oommen T; Thomas J; Kasaragod A; Dobson R; Brooks C; Jayakumar P; Cole M; Ersal T
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications.
    Douklias A; Karagiannidis L; Misichroni F; Amditis A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of unmanned aerial vehicles for efficient beach litter monitoring.
    Martin C; Parkes S; Zhang Q; Zhang X; McCabe MF; Duarte CM
    Mar Pollut Bull; 2018 Jun; 131(Pt A):662-673. PubMed ID: 29886994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the utility of underwater hyperspectral imaging for surveying and monitoring coral reef ecosystems.
    Mills MS; Ungermann M; Rigot G; den Haan J; Leon JX; Schils T
    Sci Rep; 2023 Nov; 13(1):21103. PubMed ID: 38036628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water column correction for coral reef studies by remote sensing.
    Zoffoli ML; Frouin R; Kampel M
    Sensors (Basel); 2014 Sep; 14(9):16881-931. PubMed ID: 25215941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.