BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29941802)

  • 1. A Hetero-Photoautotrophic Two-Stage Cultivation Process for Production of Fucoxanthin by the Marine Diatom
    Lu X; Sun H; Zhao W; Cheng KW; Chen F; Liu B
    Mar Drugs; 2018 Jun; 16(7):. PubMed ID: 29941802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid.
    Lu X; Liu B; He Y; Guo B; Sun H; Chen F
    Bioresour Technol; 2019 Dec; 294():122145. PubMed ID: 31539854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita.
    Xia S; Wang K; Wan L; Li A; Hu Q; Zhang C
    Mar Drugs; 2013 Jul; 11(7):2667-81. PubMed ID: 23880936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomics and Metabolomics Analyses Provide Novel Insights into Glucose-Induced Trophic Transition of the Marine Diatom
    Mao X; Ge M; Wang X; Yu J; Li X; Liu B; Chen F
    Mar Drugs; 2021 Jul; 19(8):. PubMed ID: 34436265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Diatom Strains and Characterization of Cyclotella cryptica as A Potential Fucoxanthin Producer.
    Guo B; Liu B; Yang B; Sun P; Lu X; Liu J; Chen F
    Mar Drugs; 2016 Jul; 14(7):. PubMed ID: 27399729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing fucoxanthin production in Odontella aurita by optimizing the ratio of red and blue light-emitting diodes in an auto-controlled internally illuminated photobioreactor.
    Zhang H; Gong P; Cai Q; Zhang C; Gao B
    Bioresour Technol; 2022 Jan; 344(Pt B):126260. PubMed ID: 34728358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures.
    Wang H; Zhang Y; Chen L; Cheng W; Liu T
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):1061-1071. PubMed ID: 29619547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light.
    Wang S; Verma SK; Hakeem Said I; Thomsen L; Ullrich MS; Kuhnert N
    Microb Cell Fact; 2018 Jul; 17(1):110. PubMed ID: 29986707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom
    Yang R; Wei D
    Front Bioeng Biotechnol; 2020; 8():820. PubMed ID: 32760713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions.
    Parkes R; Archer L; Gee DM; Smyth TJ; Gillespie E; Touzet N
    Biotechnol Prog; 2021 Nov; 37(6):e3197. PubMed ID: 34337902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin.
    Marella TK; Tiwari A
    Bioresour Technol; 2020 Jul; 307():123245. PubMed ID: 32234591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis.
    Sun P; Wong CC; Li Y; He Y; Mao X; Wu T; Ren Y; Chen F
    Food Chem; 2019 Mar; 277():566-572. PubMed ID: 30502186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixotrophic culture enhances fucoxanthin production in the haptophyte Pavlova gyrans.
    Yoshida E; Kato Y; Kanamoto A; Kondo A; Hasunuma T
    Appl Microbiol Biotechnol; 2024 May; 108(1):352. PubMed ID: 38819468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga
    Guo B; Oliviero T; Fogliano V; Ma Y; Chen F; Capuano E
    J Agric Food Chem; 2020 Feb; 68(7):1844-1850. PubMed ID: 31081326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Enhancing fucoxanthin production in
    Zhu D; Yang R; Wei D
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1070-1082. PubMed ID: 36994572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hibberdia magna (Chrysophyceae): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer.
    Střížek A; Přibyl P; Lukeš M; Grivalský T; Kopecký J; Galica T; Hrouzek P
    Microb Cell Fact; 2023 Apr; 22(1):73. PubMed ID: 37076862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis.
    Wen ZY; Chen F
    Appl Microbiol Biotechnol; 2001 Oct; 57(3):316-22. PubMed ID: 11759678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms.
    Marella TK; Bhattacharjya R; Tiwari A
    Microb Cell Fact; 2021 Jul; 20(1):135. PubMed ID: 34266439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Temperature, Light and Salt on the Production of Fucoxanthin from
    Li F; Rui X; Amenorfenyo DK; Pan Y; Huang X; Li C
    Mar Drugs; 2023 Sep; 21(9):. PubMed ID: 37755108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.