These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29941821)

  • 1. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.
    Kluczyk K; Jacak L; Jacak W; David C
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29941821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of the far-field response of nonlocal plasmonic ensembles.
    Tserkezis C; Maack JR; Liu Z; Wubs M; Mortensen NA
    Sci Rep; 2016 Jun; 6():28441. PubMed ID: 27329703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode Splitting Induced by Mesoscopic Electron Dynamics in Strongly Coupled Metal Nanoparticles on Dielectric Substrates.
    Kluczyk-Korch K; Jacak L; Jacak WA; David C
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31461966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely confined gap plasmon modes: when nonlocality matters.
    Boroviks S; Lin ZH; Zenin VA; Ziegler M; Dellith A; Gonçalves PAD; Wolff C; Bozhevolnyi SI; Huang JS; Mortensen NA
    Nat Commun; 2022 Jun; 13(1):3105. PubMed ID: 35661728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics.
    Li X; Fang H; Weng X; Zhang L; Dou X; Yang A; Yuan X
    Opt Express; 2015 Nov; 23(23):29738-45. PubMed ID: 26698456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density matrix based microscopic theory of molecule metal-nanoparticle interactions: linear absorbance and plasmon enhancement of intermolecular excitation energy transfer.
    Kyas G; May V
    J Chem Phys; 2011 Jan; 134(3):034701. PubMed ID: 21261378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry of quantum-sized metal nanoparticles under light illumination.
    Stewart S; Wei Q; Sun Y
    Chem Sci; 2020 Dec; 12(4):1227-1239. PubMed ID: 34163884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.
    Reddy NK; Pérez-Juste J; Pastoriza-Santos I; Lang PR; Dhont JK; Liz-Marzán LM; Vermant J
    ACS Nano; 2011 Jun; 5(6):4935-44. PubMed ID: 21545088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Strategies for Light Harvesting.
    Kundu S; Patra A
    Chem Rev; 2017 Jan; 117(2):712-757. PubMed ID: 27494796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem.
    Ciracì C; Pendry JB; Smith DR
    Chemphyschem; 2013 Apr; 14(6):1109-16. PubMed ID: 23512885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dynamical simulations of local field enhancement in metal nanoparticles.
    Negre CF; Perassi EM; Coronado EA; Sánchez CG
    J Phys Condens Matter; 2013 Mar; 25(12):125304. PubMed ID: 23449278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.