These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29941975)
1. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Karnetzky C; Zimmermann P; Trummer C; Duque Sierra C; Wörle M; Kienberger R; Holleitner A Nat Commun; 2018 Jun; 9(1):2471. PubMed ID: 29941975 [TBL] [Abstract][Full Text] [Related]
5. Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics. Taghinejad M; Taghinejad H; Xu Z; Liu Y; Rodrigues SP; Lee KT; Lian T; Adibi A; Cai W Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29333735 [TBL] [Abstract][Full Text] [Related]
6. Over 100-THz bandwidth selective difference frequency generation at LaAlO Chen L; Sutton E; Lee H; Lee JW; Li J; Eom CB; Irvin P; Levy J Light Sci Appl; 2019; 8():24. PubMed ID: 30820320 [TBL] [Abstract][Full Text] [Related]
7. Generation, transport, and detection of linear accelerator based femtosecond-terahertz pulses. Park J; Kim C; Lee J; Yim C; Kim CH; Lee J; Jung S; Ryu J; Kang HS; Joo T Rev Sci Instrum; 2011 Jan; 82(1):013305. PubMed ID: 21280823 [TBL] [Abstract][Full Text] [Related]
8. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. Berweger S; Atkin JM; Olmon RL; Raschke MB J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425 [TBL] [Abstract][Full Text] [Related]
9. Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser. Singh A; Pashkin A; Winnerl S; Welsch M; Beckh C; Sulzer P; Leitenstorfer A; Helm M; Schneider H Light Sci Appl; 2020; 9():30. PubMed ID: 32140221 [TBL] [Abstract][Full Text] [Related]
10. Femtosecond Thermal and Nonthermal Hot Electron Tunneling Inside a Photoexcited Tunnel Junction. Martín Sabanés N; Krecinic F; Kumagai T; Schulz F; Wolf M; Müller M ACS Nano; 2022 Sep; 16(9):14479-14489. PubMed ID: 36027581 [TBL] [Abstract][Full Text] [Related]
14. Scanning near-field optical coherent anti-Stokes Raman microscopy (SNOM-CARS) with femtosecond laser pulses in vibrational and electronic resonance. Namboodiri M; Khan TZ; Bom S; Flachenecker G; Materny A Opt Express; 2013 Jan; 21(1):918-26. PubMed ID: 23388985 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. Tan S; Liu L; Dai Y; Ren J; Zhao J; Petek H J Am Chem Soc; 2017 May; 139(17):6160-6168. PubMed ID: 28402118 [TBL] [Abstract][Full Text] [Related]
16. All-Optical Control of Ultrafast Switching between the Hybridized Plasmonic Fields of Au Nanorod Dimer in fs-nm Scale with Dispersed Femtosecond Laser. Song H; Lang P; Ji B; Xu Y; Peng S; Song X; Lin J J Phys Chem Lett; 2024 Aug; 15(31):7924-7930. PubMed ID: 39072443 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
19. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2. Cui Q; Zhao H ACS Nano; 2015 Apr; 9(4):3935-41. PubMed ID: 25765718 [TBL] [Abstract][Full Text] [Related]
20. Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses. Hyun M; Chung H; Na W; Kim J Nat Commun; 2023 Apr; 14(1):2345. PubMed ID: 37095100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]