These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29942373)

  • 1. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings.
    Chen B; Pathak A; Gangopadhyay K; Cornish PV; Gangopadhyay S
    Nanobiomedicine (Rij); 2015; 2():8. PubMed ID: 29942373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD.
    Bhatnagar K; Pathak A; Menke D; Cornish PV; Gangopadhyay K; Korampally V; Gangopadhyay S
    Nanotechnology; 2012 Dec; 23(49):495201. PubMed ID: 23154752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging.
    Chen B; Wood A; Pathak A; Mathai J; Bok S; Zheng H; Hamm S; Basuray S; Grant S; Gangopadhyay K; Cornish PV; Gangopadhyay S
    Nanoscale; 2016 Jun; 8(24):12189-201. PubMed ID: 27250765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Surface Plasmon-Coupled Emission with Plasmonic Gratings.
    Wood A; Mathai CJ; Gangopadhyay K; Grant S; Gangopadhyay S
    ACS Omega; 2017 May; 2(5):2041-2045. PubMed ID: 31457558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.
    Hageneder S; Bauch M; Dostalek J
    Talanta; 2016 Aug; 156-157():225-231. PubMed ID: 27260457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip.
    Chida H; Tawa K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prism-based spectral imaging of four species of single-molecule fluorophores by using one excitation laser.
    Haga T; Sonehara T; Fujita T; Takahashi S
    J Fluoresc; 2013 May; 23(3):591-7. PubMed ID: 23471629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au Gratings Fabricated by Interference Lithography for Experimental Study of Localized and Propagating Surface Plasmons.
    Dan'ko V; Dmitruk M; Indutnyi I; Mamykin S; Myn'ko V; Shepeliavyi P; Lukaniuk M; Lytvyn P
    Nanoscale Res Lett; 2017 Dec; 12(1):190. PubMed ID: 28314356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous four-color imaging of single molecule fluorophores using dichroic mirrors and four charge-coupled devices.
    Haga T; Sonehara T; Sakai T; Anazawa T; Fujita T; Takahashi S
    Rev Sci Instrum; 2011 Feb; 82(2):023701. PubMed ID: 21361595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics.
    Sobhy MA; Elshenawy MM; Takahashi M; Whitman BH; Walter NG; Hamdan SM
    Rev Sci Instrum; 2011 Nov; 82(11):113702. PubMed ID: 22128979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable narrowband plasmonic light emission from metallic crossed surface relief gratings.
    Diak E; Mazloumi M; Sabat RG
    Opt Express; 2020 Dec; 28(26):39629-39639. PubMed ID: 33379508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-dense plasmonic nanogap arrays for reorientable molecular fluorescence enhancement and spectrum reshaping.
    Wang J; Hao Q; Dong H; Zhu M; Wu L; Liu L; Wang W; Schmidt OG; Ma L
    Nanoscale; 2023 Jan; 15(3):1128-1135. PubMed ID: 35726711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.
    Sharma Y; Tiruveedhula VA; Muth JF; Dhawan A
    Opt Express; 2015 Mar; 23(5):5822-49. PubMed ID: 25836811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark plasmonic mode based perfect absorption and refractive index sensing.
    Yang WH; Zhang C; Sun S; Jing J; Song Q; Xiao S
    Nanoscale; 2017 Jul; 9(26):8907-8912. PubMed ID: 28638910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.