BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 29943302)

  • 1. Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq.
    Luo Q; Zhang H
    Adv Exp Med Biol; 2018; 1068():149-158. PubMed ID: 29943302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.
    Hu Y; Wang K; Li M
    PLoS Comput Biol; 2020 Jun; 16(6):e1007925. PubMed ID: 32502143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods.
    Sasagawa Y; Hayashi T; Nikaido I
    Adv Exp Med Biol; 2019; 1129():1-17. PubMed ID: 30968357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies.
    Hughes TK; Wadsworth MH; Gierahn TM; Do T; Weiss D; Andrade PR; Ma F; de Andrade Silva BJ; Shao S; Tsoi LC; Ordovas-Montanes J; Gudjonsson JE; Modlin RL; Love JC; Shalek AK
    Immunity; 2020 Oct; 53(4):878-894.e7. PubMed ID: 33053333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
    Ding S; Chen X; Shen K
    Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Tagged Reverse Transcription (STRT-Seq).
    Natarajan KN
    Methods Mol Biol; 2019; 1979():133-153. PubMed ID: 31028636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying cell types to interpret scRNA-seq data: how, why and more possibilities.
    Wang Z; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jul; 19(4):286-291. PubMed ID: 32232401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data.
    Huang Y; Sanguinetti G
    Methods Mol Biol; 2019; 1935():175-185. PubMed ID: 30758827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Transcriptomic Analysis of Hematopoietic Cells.
    Strzelecka PM; Ranzoni AM; Cvejic A
    Methods Mol Biol; 2021; 2185():135-158. PubMed ID: 33165847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward single-cell sequencing into clinical application: Understanding of cancer microenvironment at single-cell solution.
    Liu X; Powell CA; Wang X
    Clin Transl Med; 2022 Apr; 12(4):e782. PubMed ID: 35474615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAS-Seq is a robust and sensitive amplification method for bead-based scRNA-seq.
    Shichino S; Ueha S; Hashimoto S; Ogawa T; Aoki H; Wu B; Chen CY; Kitabatake M; Ouji-Sageshima N; Sawabata N; Kawaguchi T; Okayama T; Sugihara E; Hontsu S; Ito T; Iwata Y; Wada T; Ikeo K; Sato TA; Matsushima K
    Commun Biol; 2022 Jun; 5(1):602. PubMed ID: 35760847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigen Receptor Sequence Reconstruction and Clonality Inference from scRNA-Seq Data.
    Lindeman I; Stubbington MJT
    Methods Mol Biol; 2019; 1935():223-249. PubMed ID: 30758830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying Cancer Heterogeneity by Single-Cell RNA Sequencing.
    Bagnoli JW; Wange LE; Janjic A; Enard W
    Methods Mol Biol; 2019; 1956():305-319. PubMed ID: 30779041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model.
    Zheng Y; Zhong Y; Hu J; Shang X
    BMC Bioinformatics; 2021 Jan; 22(1):5. PubMed ID: 33407064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell transcriptome sequencing: A new approach for the study of mammalian sex determination.
    Stévant I; Nef S
    Mol Cell Endocrinol; 2018 Jun; 468():11-18. PubMed ID: 29371022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.