These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29943402)

  • 1. Dating igneous rocks using the Potassium-Argon Laser Experiment (KArLE) instrument: A case study for ~380 Ma basaltic rocks.
    Cho Y; Cohen BA
    Rapid Commun Mass Spectrom; 2018 Oct; 32(20):1755-1765. PubMed ID: 29943402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration.
    Cho Y; Horiuchi M; Shibasaki K; Kameda S; Sugita S
    Appl Spectrosc; 2017 Aug; 71(8):1969-1981. PubMed ID: 28447482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new unspiked K-Ar dating approach using laser fusion on microsamples.
    Wang F; Shi W; Guillou H; Zhang W; Yang L; Wu L; Wang Y; Zhu R
    Rapid Commun Mass Spectrom; 2019 Mar; 33(6):587-599. PubMed ID: 30632217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rb-Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon.
    Anderson FS; Levine J; Whitaker TJ
    Rapid Commun Mass Spectrom; 2015 Aug; 29(16):1457-64. PubMed ID: 26212160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dating the Martian meteorite Zagami by the ⁸⁷Rb-⁸⁷Sr isochron method with a prototype in situ resonance ionization mass spectrometer.
    Anderson FS; Levine J; Whitaker TJ
    Rapid Commun Mass Spectrom; 2015 Jan; 29(2):191-204. PubMed ID: 25641494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary examination of lunar samples from apollo 14.
    Lunar sample Preliminary Examination Team(1)
    Science; 1971 Aug; 173(3998):681-93. PubMed ID: 17798716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of lunar with terrestrial and meteoritic rocks.
    Turner FJ; Ulbrich M
    Proc Natl Acad Sci U S A; 1969 Nov; 64(3):1016-20. PubMed ID: 16591797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.
    Carlson RW; Borg LE; Gaffney AM; Boyet M
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130246. PubMed ID: 25114305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pb-Pb ages and initial Pb isotopic composition of lunar meteorites: NWA 773 clan, NWA 4734, and Dhofar 287.
    Merle RE; Nemchin AA; Whitehouse MJ; Snape JF; Kenny GG; Bellucci JJ; Connelly JN; Bizzarro M
    Meteorit Planet Sci; 2020 Aug; 55(8):1808-1832. PubMed ID: 34376965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks.
    Müntener O; Ewing T; Baumgartner LP; Manzini M; Roux T; Pellaud P; Allemann L
    Contrib Mineral Petrol; 2018; 173(5):38. PubMed ID: 29681649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiogenic argon distribution within a mineral grain: implications for dating of hydrothermal mineral-forming event in Sludyanka complex, Siberia, Russia.
    Brandt IS; Rasskazov SV; Ivanov AV; Reznitskii LZ; Brandt SB
    Isotopes Environ Health Stud; 2006 Jun; 42(2):189-201. PubMed ID: 16707319
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Bevan D; Coath CD; Lewis J; Schwieters J; Lloyd N; Craig G; Wehrs H; Elliott T
    J Anal At Spectrom; 2021 Apr; 36(5):917-931. PubMed ID: 34092881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of high alkaline and alkaline basaltic rocks: parent rocks in the Lava Durian orchard, Sisaket Province, NE Thailand.
    Singtuen V; Phajan S; Anumart A; Phajuy B; Srijanta K; Promkotra S
    Heliyon; 2021 Dec; 7(12):e08619. PubMed ID: 35005273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The apollo 15 lunar samples: a preliminary description.
    Apollo 15 Preliminary Examination Team
    Science; 1972 Jan; 175(4020):363-75. PubMed ID: 17731350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of K-Ar ages in milligram samples using an infrared laser for argon extraction.
    Solé J
    Rapid Commun Mass Spectrom; 2009 Nov; 23(22):3579-90. PubMed ID: 19844967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lunar rock compositions and some interpretations.
    Engel AE; Engel CG
    Science; 1970 Jan; 167(3918):527-8. PubMed ID: 17781481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 40Ar/(39)Ar geochronology and paleomagnetic stratigraphy of the Lukeino and lower Chemeron Formations at Tabarin and Kapcheberek, Tugen Hills, Kenya.
    Deino AL; Tauxe L; Monaghan M; Hill A
    J Hum Evol; 2002; 42(1-2):117-40. PubMed ID: 11795971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of rocks and soils in Gusev Crater from the alpha particle x-ray spectrometer.
    Gellert R; Rieder R; Anderson RC; Brückner J; Clark BC; Dreibus G; Economou T; Klingelhöfer G; Lugmair GW; Ming DW; Squyres SW; D'Uston C; Wänke H; Yen A; Zipfel J
    Science; 2004 Aug; 305(5685):829-32. PubMed ID: 15297665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Rubidium-Strontium Dating of Hydrocarbon Charge Using Small Authigenic Illitic Clay Aliquots from the Silurian Bituminous Sandstone in the Tarim Basin, NW China.
    Li S; Wang XC; Li CF; Wilde SA; Zhang Y; Golding SD; Liu K; Zhang Y
    Sci Rep; 2019 Aug; 9(1):12565. PubMed ID: 31467351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubidium-strontium age and elemental and isotopic abundances of some trace elements in lunar samples.
    Murthy VR; Schmitt RA; Rey P
    Science; 1970 Jan; 167(3918):476-9. PubMed ID: 17781459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.