These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 29943510)
1. Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum. Li R; Feng Y; Liu S; Qi K; Cui Q; Liu YJ Microb Biotechnol; 2018 Sep; 11(5):905-916. PubMed ID: 29943510 [TBL] [Abstract][Full Text] [Related]
2. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. Moraïs S; Morag E; Barak Y; Goldman D; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA mBio; 2012 Dec; 3(6):. PubMed ID: 23232718 [TBL] [Abstract][Full Text] [Related]
3. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788 [TBL] [Abstract][Full Text] [Related]
4. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772 [TBL] [Abstract][Full Text] [Related]
5. Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum. Chen C; Qi K; Chi F; Song X; Feng Y; Cui Q; Liu YJ Int J Biol Macromol; 2022 May; 207():784-790. PubMed ID: 35351552 [TBL] [Abstract][Full Text] [Related]
6. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Shinoda S; Kurosaki M; Kokuzawa T; Hirano K; Takano H; Ueda K; Haruki M; Hirano N Appl Biochem Biotechnol; 2019 Mar; 187(3):994-1010. PubMed ID: 30136170 [TBL] [Abstract][Full Text] [Related]
7. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Yoav S; Barak Y; Shamshoum M; Borovok I; Lamed R; Dassa B; Hadar Y; Morag E; Bayer EA Biotechnol Biofuels; 2017; 10():222. PubMed ID: 28932263 [TBL] [Abstract][Full Text] [Related]
8. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum. Zhang P; Wang B; Xiao Q; Wu S Bioresour Technol; 2015 Aug; 190():36-43. PubMed ID: 25919935 [TBL] [Abstract][Full Text] [Related]
9. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Gefen G; Anbar M; Morag E; Lamed R; Bayer EA Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10298-303. PubMed ID: 22689961 [TBL] [Abstract][Full Text] [Related]
11. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422 [TBL] [Abstract][Full Text] [Related]
12. Coordinated β-glucosidase activity with the cellulosome is effective for enhanced lignocellulose saccharification. Qi K; Chen C; Yan F; Feng Y; Bayer EA; Kosugi A; Cui Q; Liu YJ Bioresour Technol; 2021 Oct; 337():125441. PubMed ID: 34182347 [TBL] [Abstract][Full Text] [Related]
13. Impact of scaffoldin mechanostability on cellulosomal activity. Galera-Prat A; Vera AM; Moraïs S; Vazana Y; Bayer EA; Carrión-Vázquez M Biomater Sci; 2020 Jul; 8(13):3601-3610. PubMed ID: 32232253 [TBL] [Abstract][Full Text] [Related]
14. [Mics of the Clostridium thermocellum in lignocellulose degradation--a review]. Chen L; Wang L; Zhang H Wei Sheng Wu Xue Bao; 2014 Feb; 54(2):121-8. PubMed ID: 24818461 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976 [TBL] [Abstract][Full Text] [Related]
16. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO; Noronha EF; Camargo BR; Hamann PRV; Steindorff AS; Quirino BF; de Sousa MV; Ulhoa CJ; Felix CR J Ind Microbiol Biotechnol; 2017 Jun; 44(6):825-834. PubMed ID: 28181082 [TBL] [Abstract][Full Text] [Related]
17. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. Levi Hevroni B; Moraïs S; Ben-David Y; Morag E; Bayer EA mBio; 2020 Mar; 11(2):. PubMed ID: 32234813 [No Abstract] [Full Text] [Related]
18. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Xu C; Qin Y; Li Y; Ji Y; Huang J; Song H; Xu J Bioresour Technol; 2010 Dec; 101(24):9560-9. PubMed ID: 20702089 [TBL] [Abstract][Full Text] [Related]
19. The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation. Li X; Xiao Y; Feng Y; Li B; Li W; Cui Q Enzyme Microb Technol; 2018 Aug; 115():52-61. PubMed ID: 29859603 [TBL] [Abstract][Full Text] [Related]
20. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Waeonukul R; Kosugi A; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Prawitwong P; Deng L; Saito M; Mori Y Bioresour Technol; 2012 Mar; 107():352-7. PubMed ID: 22257861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]