These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29943545)

  • 1. [Regression analysis to select native-like structures from decoys of antigen-antibody docking].
    Chen Z; Chi X; Fan P; Zhang G; Wang M; Yu C; Chen W
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):993-1001. PubMed ID: 29943545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model Building of Antibody-Antigen Complex Structures Using GBSA Scores.
    Shimba N; Kamiya N; Nakamura H
    J Chem Inf Model; 2016 Oct; 56(10):2005-2012. PubMed ID: 27618247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A soft docking algorithm for predicting the structure of antibody-antigen complexes.
    Li CH; Ma XH; Chen WZ; Wang CX
    Proteins; 2003 Jul; 52(1):47-50. PubMed ID: 12784367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consensus scoring for enriching near-native structures from protein-protein docking decoys.
    Liang S; Meroueh SO; Wang G; Qiu C; Zhou Y
    Proteins; 2009 May; 75(2):397-403. PubMed ID: 18831053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational approach for studying antibody-antigen interactions without prior structural information: the anti-testosterone binding antibody as a case study.
    Koivuniemi A; Takkinen K; Nevanen T
    Proteins; 2017 Feb; 85(2):322-331. PubMed ID: 27936519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CyClus: a fast, comprehensive cylindrical interface approximation clustering/reranking method for rigid-body protein-protein docking decoys.
    Omori S; Kitao A
    Proteins; 2013 Jun; 81(6):1005-16. PubMed ID: 23344972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZDOCK: an initial-stage protein-docking algorithm.
    Chen R; Li L; Weng Z
    Proteins; 2003 Jul; 52(1):80-7. PubMed ID: 12784371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants.
    Guest JD; Vreven T; Zhou J; Moal I; Jeliazkov JR; Gray JJ; Weng Z; Pierce BG
    Structure; 2021 Jun; 29(6):606-621.e5. PubMed ID: 33539768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of antibody epitopes based on docking and homology modeling.
    Desta IT; Kotelnikov S; Jones G; Ghani U; Abyzov M; Kholodov Y; Standley DM; Sabitova M; Beglov D; Vajda S; Kozakov D
    Proteins; 2023 Feb; 91(2):171-182. PubMed ID: 36088633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving B-cell epitope prediction and its application to global antibody-antigen docking.
    Krawczyk K; Liu X; Baker T; Shi J; Deane CM
    Bioinformatics; 2014 Aug; 30(16):2288-94. PubMed ID: 24753488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of pairwise potentials via logistic regression to score protein-protein interactions.
    Tanemura KA; Pei J; Merz KM
    Proteins; 2020 Dec; 88(12):1559-1568. PubMed ID: 32729132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody-specified B-cell epitope prediction in line with the principle of context-awareness.
    Zhao L; Wong L; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1483-94. PubMed ID: 21383422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope.
    Wong WK; Robinson SA; Bujotzek A; Georges G; Lewis AP; Shi J; Snowden J; Taddese B; Deane CM
    MAbs; 2021; 13(1):1873478. PubMed ID: 33448242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paratope states in solution improve structure prediction and docking.
    Fernández-Quintero ML; Vangone A; Loeffler JR; Seidler CA; Georges G; Liedl KR
    Structure; 2022 Mar; 30(3):430-440.e3. PubMed ID: 34838187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protein-protein docking benchmark.
    Chen R; Mintseris J; Janin J; Weng Z
    Proteins; 2003 Jul; 52(1):88-91. PubMed ID: 12784372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEASE: predicting B-cell epitopes utilizing antibody sequence.
    Sela-Culang I; Ashkenazi S; Peters B; Ofran Y
    Bioinformatics; 2015 Apr; 31(8):1313-5. PubMed ID: 25432167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots.
    Sukhwal A; Sowdhamini R
    Bioinform Biol Insights; 2015; 9():141-51. PubMed ID: 26448684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How different from random are docking predictions when ranked by scoring functions?
    Feliu E; Oliva B
    Proteins; 2010 Dec; 78(16):3376-85. PubMed ID: 20848549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.