These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29943553)

  • 1. Cofactor Regeneration Using Permeabilized
    Rho HS; Choi K
    J Microbiol Biotechnol; 2018 Aug; 28(8):1346-1351. PubMed ID: 29943553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.
    Hayashi J; Yamamoto K; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2016 Dec; 84(12):1786-1796. PubMed ID: 27616573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration.
    Zhang J; Cui Z; Chang H; Fan X; Zhao Q; Wei W
    Biotechnol Lett; 2016 Sep; 38(9):1559-64. PubMed ID: 27233513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of sn-glycerol-1-phosphate dehydrogenase from the aerobic hyperthermophilic archaeon, Aeropyrum pernix K1.
    Han JS; Kosugi Y; Ishida H; Ishikawa K
    Eur J Biochem; 2002 Feb; 269(3):969-76. PubMed ID: 11846799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways.
    Li Y; Su M; Ge X; Tian P
    Biotechnol Lett; 2013 Oct; 35(10):1609-15. PubMed ID: 23794046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick.
    Drecktrah D; Hall LS; Crouse B; Schwarz B; Richards C; Bohrnsen E; Wulf M; Long B; Bailey J; Gherardini F; Bosio CM; Lybecker MC; Samuels DS
    PLoS Pathog; 2022 Mar; 18(3):e1010385. PubMed ID: 35255112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration.
    Mouri T; Michizoe J; Ichinose H; Kamiya N; Goto M
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):514-20. PubMed ID: 16421717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD
    Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW
    Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration.
    Fang B; Jiang W; Zhou Q; Wang S
    PLoS One; 2015; 10(6):e0128412. PubMed ID: 26115038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.
    Zhang Y; Gao F; Zhang SP; Su ZG; Ma GH; Wang P
    Bioresour Technol; 2011 Jan; 102(2):1837-43. PubMed ID: 20947342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli.
    Mazumdar S; Blankschien MD; Clomburg JM; Gonzalez R
    Microb Cell Fact; 2013 Jan; 12():7. PubMed ID: 23347598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion.
    Knudsen JD; Hägglöf C; Weber N; Carlquist M
    Microb Cell Fact; 2016 Feb; 15():37. PubMed ID: 26879378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel evolution of pairs of dehydrogenase isoenzymes.
    Senkbeil E; White HB
    J Mol Evol; 1978 May; 11(1):57-66. PubMed ID: 207878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autodisplay of glucose-6-phosphate dehydrogenase for redox cofactor regeneration at the cell surface.
    Schüürmann J; Quehl P; Lindhorst F; Lang K; Jose J
    Biotechnol Bioeng; 2017 Aug; 114(8):1658-1669. PubMed ID: 28401536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.