These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy. Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403 [TBL] [Abstract][Full Text] [Related]
3. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy. Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804 [TBL] [Abstract][Full Text] [Related]
4. Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer. Mukherjee A; Madamsetty VS; Paul MK; Mukherjee S Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936832 [TBL] [Abstract][Full Text] [Related]
5. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Wang Y; Cai R; Chen C Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of plumbagin on silver nanoframework for tunable redox modulation: Implications for therapeutic angiogenesis. Duraipandy N; Dharunya G; Lakra R; Korapatti PS; Syamala Kiran M J Cell Physiol; 2019 Aug; 234(8):13110-13127. PubMed ID: 30556909 [TBL] [Abstract][Full Text] [Related]
8. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. Jiang W; Huang Y; An Y; Kim BY ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564 [TBL] [Abstract][Full Text] [Related]
9. Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations. Nery de Albuquerque Rego G; da Hora Alves A; Penteado Nucci M; Bustamante Mamani J; Anselmo de Oliveira F; Gamarra LF Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32599834 [TBL] [Abstract][Full Text] [Related]
10. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Alsaab HO; Al-Hibs AS; Alzhrani R; Alrabighi KK; Alqathama A; Alwithenani A; Almalki AH; Althobaiti YS Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562829 [TBL] [Abstract][Full Text] [Related]
11. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Zhao Y; Adjei AA Oncologist; 2015 Jun; 20(6):660-73. PubMed ID: 26001391 [TBL] [Abstract][Full Text] [Related]
12. Effects of structural distinction in neodymium nanoparticle for therapeutic application in aberrant angiogenesis. N D; Manikantan Syamala K Colloids Surf B Biointerfaces; 2019 Sep; 181():450-460. PubMed ID: 31176117 [TBL] [Abstract][Full Text] [Related]
13. The multifaceted world of angiogenesis control. Guidolin D Expert Opin Ther Targets; 2010 Nov; 14(11):1135-8. PubMed ID: 20942743 [TBL] [Abstract][Full Text] [Related]
14. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Hoseinzadeh A; Ghoddusi Johari H; Anbardar MH; Tayebi L; Vafa E; Abbasi M; Vaez A; Golchin A; Amani AM; Jangjou A Eur J Med Res; 2022 Nov; 27(1):232. PubMed ID: 36333816 [TBL] [Abstract][Full Text] [Related]
15. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Giordo R; Wehbe Z; Paliogiannis P; Eid AH; Mangoni AA; Pintus G Semin Cancer Biol; 2022 Nov; 86(Pt 2):784-804. PubMed ID: 35257860 [TBL] [Abstract][Full Text] [Related]
16. Nanotechnology for angiogenesis: opportunities and challenges. Kargozar S; Baino F; Hamzehlou S; Hamblin MR; Mozafari M Chem Soc Rev; 2020 Jul; 49(14):5008-5057. PubMed ID: 32538379 [TBL] [Abstract][Full Text] [Related]