BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29943672)

  • 1. Enhanced Voluntary Exercise Improves Functional Recovery following Spinal Cord Injury by Impacting the Local Neuroglial Injury Response and Supporting the Rewiring of Supraspinal Circuits.
    Loy K; Schmalz A; Hoche T; Jacobi A; Kreutzfeldt M; Merkler D; Bareyre FM
    J Neurotrauma; 2018 Dec; 35(24):2904-2915. PubMed ID: 29943672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary wheel running improves recovery from a moderate spinal cord injury.
    Engesser-Cesar C; Anderson AJ; Basso DM; Edgerton VR; Cotman CW
    J Neurotrauma; 2005 Jan; 22(1):157-71. PubMed ID: 15665610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neither environmental enrichment nor voluntary wheel running enhances recovery from incomplete spinal cord injury in rats.
    Erschbamer MK; Pham TM; Zwart MC; Baumans V; Olson L
    Exp Neurol; 2006 Sep; 201(1):154-64. PubMed ID: 16762344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth.
    Engesser-Cesar C; Ichiyama RM; Nefas AL; Hill MA; Edgerton VR; Cotman CW; Anderson AJ
    Eur J Neurosci; 2007 Apr; 25(7):1931-9. PubMed ID: 17439482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons.
    Rank MM; Galea MP; Callister R; Callister RJ
    Exp Neurol; 2018 Feb; 300():201-211. PubMed ID: 29146456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training.
    Rank MM; Flynn JR; Battistuzzo CR; Galea MP; Callister R; Callister RJ
    J Physiol; 2015 Jan; 593(1):331-45. PubMed ID: 25556804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury.
    Shibata T; Tashiro S; Shinozaki M; Hashimoto S; Matsumoto M; Nakamura M; Okano H; Nagoshi N
    Exp Neurol; 2021 Nov; 345():113834. PubMed ID: 34370998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury.
    Sánchez-Ventura J; Giménez-Llort L; Penas C; Udina E
    Exp Neurol; 2021 Feb; 336():113533. PubMed ID: 33264633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinational Approach of Genetic SHP-1 Suppression and Voluntary Exercise Promotes Corticospinal Tract Sprouting and Motor Recovery Following Brain Injury.
    Tanaka T; Ito T; Sumizono M; Ono M; Kato N; Honma S; Ueno M
    Neurorehabil Neural Repair; 2020 Jun; 34(6):558-570. PubMed ID: 32441214
    [No Abstract]   [Full Text] [Related]  

  • 11. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial scar expression of CHL1, the close homolog of the adhesion molecule L1, limits recovery after spinal cord injury.
    Jakovcevski I; Wu J; Karl N; Leshchyns'ka I; Sytnyk V; Chen J; Irintchev A; Schachner M
    J Neurosci; 2007 Jul; 27(27):7222-33. PubMed ID: 17611275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury.
    Siegel CS; Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Jan; 35(4):1443-57. PubMed ID: 25632122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats.
    Chen K; Marsh BC; Cowan M; Al'Joboori YD; Gigout S; Smith CC; Messenger N; Gamper N; Schwab ME; Ichiyama RM
    Exp Neurol; 2017 Jun; 292():135-144. PubMed ID: 28341461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting.
    McKillop WM; York EM; Rubinger L; Liu T; Ossowski NM; Xu K; Hryciw T; Brown A
    Exp Neurol; 2016 Sep; 283(Pt A):1-15. PubMed ID: 27235933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.