These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29943782)

  • 21. Hydrogenation of CO
    Burgess SA; Grubel K; Appel AM; Wiedner ES; Linehan JC
    Inorg Chem; 2017 Jul; 56(14):8580-8589. PubMed ID: 28657717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
    Lu QQ; Yu HZ; Fu Y
    Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.
    Fujita KI; Wada T; Shiraishi T
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10886-10889. PubMed ID: 28748606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage.
    Ryabchuk P; Agapova A; Kreyenschulte C; Lund H; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2019 Apr; 55(34):4969-4972. PubMed ID: 30968097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand.
    Onishi N; Xu S; Manaka Y; Suna Y; Wang WH; Muckerman JT; Fujita E; Himeda Y
    Inorg Chem; 2015 Jun; 54(11):5114-23. PubMed ID: 25691331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.
    Hull JF; Himeda Y; Wang WH; Hashiguchi B; Periana R; Szalda DJ; Muckerman JT; Fujita E
    Nat Chem; 2012 Mar; 4(5):383-8. PubMed ID: 22522258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis.
    Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW
    Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
    Schuchmann K; Müller V
    Science; 2013 Dec; 342(6164):1382-5. PubMed ID: 24337298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.
    Ganguly G; Malakar T; Paul A
    ChemSusChem; 2016 Jun; 9(12):1386-91. PubMed ID: 27174725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.
    Ge H; Jing Y; Yang X
    Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles.
    Deraedt C; Ye R; Ralston WT; Toste FD; Somorjai GA
    J Am Chem Soc; 2017 Dec; 139(49):18084-18092. PubMed ID: 29144751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3.
    Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L
    Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.
    Fink C; Montandon-Clerc M; Laurenczy G
    Chimia (Aarau); 2015; 69(12):746-752. PubMed ID: 26842324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exclusively Ligand-Mediated Catalytic Dehydrogenation of Alcohols.
    Sengupta D; Bhattacharjee R; Pramanick R; Rath SP; Saha Chowdhury N; Datta A; Goswami S
    Inorg Chem; 2016 Oct; 55(19):9602-9610. PubMed ID: 27646531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.
    Bi QY; Lin JD; Liu YM; Du XL; Wang JQ; He HY; Cao Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13583-7. PubMed ID: 25382034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.