BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29944153)

  • 1. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone.
    Kim R; Wang Y; Hwang SJ; Attayek PJ; Smiddy NM; Reed MI; Sims CE; Allbritton NL
    Lab Chip; 2018 Jul; 18(15):2202-2213. PubMed ID: 29944153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Human Colonic Crypt Array by Application of Chemical Gradients Across a Shaped Epithelial Monolayer.
    Wang Y; Kim R; Gunasekara DB; Reed MI; DiSalvo M; Nguyen DL; Bultman SJ; Sims CE; Magness ST; Allbritton NL
    Cell Mol Gastroenterol Hepatol; 2018; 5(2):113-130. PubMed ID: 29693040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.
    Wang Y; Gunasekara DB; Reed MI; DiSalvo M; Bultman SJ; Sims CE; Magness ST; Allbritton NL
    Biomaterials; 2017 Jun; 128():44-55. PubMed ID: 28288348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human 2D Crypt Model for Assaying Intestinal Stem Cell Proliferation and Differentiation.
    Wang Y; Sims CE; Allbritton NL
    Anal Chem; 2022 Jul; 94(26):9345-9354. PubMed ID: 35736812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels.
    Hinman SS; Wang Y; Kim R; Allbritton NL
    Nat Protoc; 2021 Jan; 16(1):352-382. PubMed ID: 33299154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro generation of colonic epithelium from primary cells guided by microstructures.
    Wang Y; Ahmad AA; Sims CE; Magness ST; Allbritton NL
    Lab Chip; 2014 May; 14(9):1622-31. PubMed ID: 24647645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryosectioning Method for Microdissection of Murine Colonic Mucosa.
    Farkas AE; Gerner-Smidt C; Lili L; Nusrat A; Capaldo CT
    J Vis Exp; 2015 Jul; (101):e53112. PubMed ID: 26274554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Cell Dynamics in Colon and Intestinal Crypts: The Significance of Central Stem Cells in Tumorigenesis.
    Mahdipour-Shirayeh A; Shahriyari L
    Bull Math Biol; 2018 Sep; 80(9):2273-2305. PubMed ID: 29978308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capture and 3D culture of colonic crypts and colonoids in a microarray platform.
    Wang Y; Ahmad AA; Shah PK; Sims CE; Magness ST; Allbritton NL
    Lab Chip; 2013 Dec; 13(23):4625-34. PubMed ID: 24113577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment.
    Attayek PJ; Ahmad AA; Wang Y; Williamson I; Sims CE; Magness ST; Allbritton NL
    PLoS One; 2016; 11(4):e0153795. PubMed ID: 27100890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis.
    Rubin DC; Swietlicki E; Roth KA; Gordon JI
    J Biol Chem; 1992 Jul; 267(21):15122-33. PubMed ID: 1634547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering.
    Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL
    Biomater Sci; 2019 Sep; 7(10):4310-4324. PubMed ID: 31410428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of SV-40 T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and reentry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation.
    Hauft SM; Kim SH; Schmidt GH; Pease S; Rees S; Harris S; Roth KA; Hansbrough JR; Cohn SM; Ahnen DJ
    J Cell Biol; 1992 May; 117(4):825-39. PubMed ID: 1349609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine.
    Smither BR; Pang HY; Brubaker PL
    Endocrinology; 2016 Jul; 157(7):2660-70. PubMed ID: 27187177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts.
    Zhang L; Lander AD; Nie Q
    BMC Syst Biol; 2012 Jul; 6():93. PubMed ID: 22849824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of pig intestinal stem cells from birth to weaning.
    Verdile N; Mirmahmoudi R; Brevini TAL; Gandolfi F
    Animal; 2019 Dec; 13(12):2830-2839. PubMed ID: 31199215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt-reporter expression pattern in the mouse intestine during homeostasis.
    Davies PS; Dismuke AD; Powell AE; Carroll KH; Wong MH
    BMC Gastroenterol; 2008 Dec; 8():57. PubMed ID: 19055726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mouse model of intestinal stem cell function and regeneration.
    Slorach EM; Campbell FC; Dorin JR
    J Cell Sci; 1999 Sep; 112 Pt 18():3029-38. PubMed ID: 10462519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary Intestinal Epithelial Organoid Culture.
    Mizutani T; Clevers H
    Methods Mol Biol; 2020; 2171():185-200. PubMed ID: 32705642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts.
    Maeda K
    Drug Metab Dispos; 2023 Sep; 51(9):1136-1144. PubMed ID: 37142427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.