These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29944153)
1. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone. Kim R; Wang Y; Hwang SJ; Attayek PJ; Smiddy NM; Reed MI; Sims CE; Allbritton NL Lab Chip; 2018 Jul; 18(15):2202-2213. PubMed ID: 29944153 [TBL] [Abstract][Full Text] [Related]
2. Formation of Human Colonic Crypt Array by Application of Chemical Gradients Across a Shaped Epithelial Monolayer. Wang Y; Kim R; Gunasekara DB; Reed MI; DiSalvo M; Nguyen DL; Bultman SJ; Sims CE; Magness ST; Allbritton NL Cell Mol Gastroenterol Hepatol; 2018; 5(2):113-130. PubMed ID: 29693040 [TBL] [Abstract][Full Text] [Related]
3. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Wang Y; Gunasekara DB; Reed MI; DiSalvo M; Bultman SJ; Sims CE; Magness ST; Allbritton NL Biomaterials; 2017 Jun; 128():44-55. PubMed ID: 28288348 [TBL] [Abstract][Full Text] [Related]
4. Human 2D Crypt Model for Assaying Intestinal Stem Cell Proliferation and Differentiation. Wang Y; Sims CE; Allbritton NL Anal Chem; 2022 Jul; 94(26):9345-9354. PubMed ID: 35736812 [TBL] [Abstract][Full Text] [Related]
5. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Hinman SS; Wang Y; Kim R; Allbritton NL Nat Protoc; 2021 Jan; 16(1):352-382. PubMed ID: 33299154 [TBL] [Abstract][Full Text] [Related]
6. In vitro generation of colonic epithelium from primary cells guided by microstructures. Wang Y; Ahmad AA; Sims CE; Magness ST; Allbritton NL Lab Chip; 2014 May; 14(9):1622-31. PubMed ID: 24647645 [TBL] [Abstract][Full Text] [Related]
7. Cryosectioning Method for Microdissection of Murine Colonic Mucosa. Farkas AE; Gerner-Smidt C; Lili L; Nusrat A; Capaldo CT J Vis Exp; 2015 Jul; (101):e53112. PubMed ID: 26274554 [TBL] [Abstract][Full Text] [Related]
8. Modeling Cell Dynamics in Colon and Intestinal Crypts: The Significance of Central Stem Cells in Tumorigenesis. Mahdipour-Shirayeh A; Shahriyari L Bull Math Biol; 2018 Sep; 80(9):2273-2305. PubMed ID: 29978308 [TBL] [Abstract][Full Text] [Related]
9. Capture and 3D culture of colonic crypts and colonoids in a microarray platform. Wang Y; Ahmad AA; Shah PK; Sims CE; Magness ST; Allbritton NL Lab Chip; 2013 Dec; 13(23):4625-34. PubMed ID: 24113577 [TBL] [Abstract][Full Text] [Related]
10. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment. Attayek PJ; Ahmad AA; Wang Y; Williamson I; Sims CE; Magness ST; Allbritton NL PLoS One; 2016; 11(4):e0153795. PubMed ID: 27100890 [TBL] [Abstract][Full Text] [Related]
11. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis. Rubin DC; Swietlicki E; Roth KA; Gordon JI J Biol Chem; 1992 Jul; 267(21):15122-33. PubMed ID: 1634547 [TBL] [Abstract][Full Text] [Related]
12. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL Biomater Sci; 2019 Sep; 7(10):4310-4324. PubMed ID: 31410428 [TBL] [Abstract][Full Text] [Related]
13. Expression of SV-40 T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and reentry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation. Hauft SM; Kim SH; Schmidt GH; Pease S; Rees S; Harris S; Roth KA; Hansbrough JR; Cohn SM; Ahnen DJ J Cell Biol; 1992 May; 117(4):825-39. PubMed ID: 1349609 [TBL] [Abstract][Full Text] [Related]
14. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine. Smither BR; Pang HY; Brubaker PL Endocrinology; 2016 Jul; 157(7):2660-70. PubMed ID: 27187177 [TBL] [Abstract][Full Text] [Related]
15. A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. Zhang L; Lander AD; Nie Q BMC Syst Biol; 2012 Jul; 6():93. PubMed ID: 22849824 [TBL] [Abstract][Full Text] [Related]
16. Evolution of pig intestinal stem cells from birth to weaning. Verdile N; Mirmahmoudi R; Brevini TAL; Gandolfi F Animal; 2019 Dec; 13(12):2830-2839. PubMed ID: 31199215 [TBL] [Abstract][Full Text] [Related]
17. Wnt-reporter expression pattern in the mouse intestine during homeostasis. Davies PS; Dismuke AD; Powell AE; Carroll KH; Wong MH BMC Gastroenterol; 2008 Dec; 8():57. PubMed ID: 19055726 [TBL] [Abstract][Full Text] [Related]
18. A mouse model of intestinal stem cell function and regeneration. Slorach EM; Campbell FC; Dorin JR J Cell Sci; 1999 Sep; 112 Pt 18():3029-38. PubMed ID: 10462519 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts. Maeda K Drug Metab Dispos; 2023 Sep; 51(9):1136-1144. PubMed ID: 37142427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]