These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 29944198)
1. Colors of attraction: Modeling insect flight to light behavior. Donners M; van Grunsven RHA; Groenendijk D; van Langevelde F; Bikker JW; Longcore T; Veenendaal E J Exp Zool A Ecol Integr Physiol; 2018 Oct; 329(8-9):434-440. PubMed ID: 29944198 [TBL] [Abstract][Full Text] [Related]
2. Impact of Different Wavelengths of Artificial Light at Night on Phototaxis in Aquatic Insects. Kühne JL; van Grunsven RHA; Jechow A; Hölker F Integr Comp Biol; 2021 Oct; 61(3):1182-1190. PubMed ID: 34180520 [TBL] [Abstract][Full Text] [Related]
3. Advances in insect phototaxis and application to pest management: a review. Kim KN; Huang QY; Lei CL Pest Manag Sci; 2019 Dec; 75(12):3135-3143. PubMed ID: 31251458 [TBL] [Abstract][Full Text] [Related]
4. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Longcore T; Aldern HL; Eggers JF; Flores S; Franco L; Hirshfield-Yamanishi E; Petrinec LN; Yan WA; Barroso AM Philos Trans R Soc Lond B Biol Sci; 2015 May; 370(1667):. PubMed ID: 25780237 [TBL] [Abstract][Full Text] [Related]
5. Why flying insects gather at artificial light. Fabian ST; Sondhi Y; Allen PE; Theobald JC; Lin HT Nat Commun; 2024 Jan; 15(1):689. PubMed ID: 38291028 [TBL] [Abstract][Full Text] [Related]
6. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Boda P; Horváth G; Kriska G; Blahó M; Csabai Z Naturwissenschaften; 2014 May; 101(5):385-95. PubMed ID: 24671223 [TBL] [Abstract][Full Text] [Related]
7. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Altermatt F; Ebert D Biol Lett; 2016 Apr; 12(4):. PubMed ID: 27072407 [TBL] [Abstract][Full Text] [Related]
8. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. Longcore T; Rodríguez A; Witherington B; Penniman JF; Herf L; Herf M J Exp Zool A Ecol Integr Physiol; 2018 Oct; 329(8-9):511-521. PubMed ID: 29894022 [TBL] [Abstract][Full Text] [Related]
9. Declines in moth populations stress the need for conserving dark nights. van Langevelde F; Braamburg-Annegarn M; Huigens ME; Groendijk R; Poitevin O; van Deijk JR; Ellis WN; van Grunsven RHA; de Vos R; Vos RA; Franzén M; WallisDeVries MF Glob Chang Biol; 2018 Mar; 24(3):925-932. PubMed ID: 29215778 [TBL] [Abstract][Full Text] [Related]
10. Attraction of Insects to Ornamental Lighting Used on Cultural Heritage Buildings: A Case Study in an Urban Area. Méndez A; Martín L; Arines J; Carballeira R; Sanmartín P Insects; 2022 Dec; 13(12):. PubMed ID: 36555063 [TBL] [Abstract][Full Text] [Related]
11. Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types? Wakefield A; Broyles M; Stone EL; Jones G; Harris S Ecol Evol; 2016 Nov; 6(22):8028-8036. PubMed ID: 27878075 [TBL] [Abstract][Full Text] [Related]
12. Reducing the fatal attraction of nocturnal insects using tailored and shielded road lights. Dietenberger M; Jechow A; Kalinkat G; Schroer S; Saathoff B; Hölker F Commun Biol; 2024 May; 7(1):671. PubMed ID: 38822081 [TBL] [Abstract][Full Text] [Related]
13. No effect of artificial light of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice experiment. Spoelstra K; Ramakers JJC; van Dis NE; Visser ME J Exp Zool A Ecol Integr Physiol; 2018 Oct; 329(8-9):506-510. PubMed ID: 29808964 [TBL] [Abstract][Full Text] [Related]
14. Street lighting: sex-independent impacts on moth movement. Degen T; Mitesser O; Perkin EK; Weiß NS; Oehlert M; Mattig E; Hölker F J Anim Ecol; 2016 Sep; 85(5):1352-60. PubMed ID: 27146262 [TBL] [Abstract][Full Text] [Related]
15. Color polarization vision mediates the strength of an evolutionary trap. Robertson BA; Horváth G Evol Appl; 2019 Feb; 12(2):175-186. PubMed ID: 30697332 [TBL] [Abstract][Full Text] [Related]
16. Observations of movement dynamics of flying insects using high resolution lidar. Kirkeby C; Wellenreuther M; Brydegaard M Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089 [TBL] [Abstract][Full Text] [Related]
17. Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights. Wilson R; Wakefield A; Roberts N; Jones G Parasit Vectors; 2021 Jan; 14(1):28. PubMed ID: 33413591 [TBL] [Abstract][Full Text] [Related]
18. Impact of artificial light intensity on nocturnal insect diversity in urban and rural areas of the Asir province, Saudi Arabia. Hakami AR; Khan KA; Ghramh HA; Ahmad Z; Al-Zayd AAA PLoS One; 2020; 15(12):e0242315. PubMed ID: 33259480 [TBL] [Abstract][Full Text] [Related]
19. Phototaxis of Propsilocerus akamusi (Diptera: Chironomidae) From a Shallow Eutrophic Lake in Response to Led Lamps. Hirabayashi K; Nagai Y; Mushya T; Higashino M; Taniguchi Y J Am Mosq Control Assoc; 2017 Jun; 33(2):128-133. PubMed ID: 28590222 [TBL] [Abstract][Full Text] [Related]
20. Effects of nocturnal celestial illumination on high-flying migrant insects. Gao B; Hu G; Chapman JW Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230115. PubMed ID: 38705175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]