These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29944340)

  • 1. Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis.
    Vilkhovoy M; Horvath N; Shih CH; Wayman JA; Calhoun K; Swartz J; Varner JD
    ACS Synth Biol; 2018 Aug; 7(8):1844-1857. PubMed ID: 29944340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract.
    Dopp BJL; Tamiev DD; Reuel NF
    Biotechnol Adv; 2019; 37(1):246-258. PubMed ID: 30572024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in
    Horvath N; Vilkhovoy M; Wayman JA; Calhoun K; Swartz J; Varner JD
    Metab Eng Commun; 2020 Jun; 10():e00113. PubMed ID: 32280586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute Quantification of Cell-Free Protein Synthesis Metabolism by Reversed-Phase Liquid Chromatography-Mass Spectrometry.
    Vilkhovoy M; Dai D; Vadhin S; Adhikari A; Varner JD
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31710042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplifying and streamlining Escherichia coli-based cell-free protein synthesis.
    Yang WC; Patel KG; Wong HE; Swartz JR
    Biotechnol Prog; 2012; 28(2):413-20. PubMed ID: 22275217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system.
    Caschera F; Noireaux V
    Biochimie; 2014 Apr; 99():162-8. PubMed ID: 24326247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis.
    Underwood KA; Swartz JR; Puglisi JD
    Biotechnol Bioeng; 2005 Aug; 91(4):425-35. PubMed ID: 15991235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems.
    Cai Q; Hanson JA; Steiner AR; Tran C; Masikat MR; Chen R; Zawada JF; Sato AK; Hallam TJ; Yin G
    Biotechnol Prog; 2015; 31(3):823-31. PubMed ID: 25826247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing a high yielding streptomyces-based cell-free protein synthesis system.
    Li J; Wang H; Kwon YC; Jewett MC
    Biotechnol Bioeng; 2017 Jun; 114(6):1343-1353. PubMed ID: 28112394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid balancing for the prediction and evaluation of protein concentrations in cell-free protein synthesis systems.
    Rolf J; Handke J; Burzinski F; Lütz S; Rosenthal K
    Biotechnol Prog; 2023; 39(6):e3373. PubMed ID: 37408088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Protein Synthesis as a Prototyping Platform for Mammalian Synthetic Biology.
    Kopniczky MB; Canavan C; McClymont DW; Crone MA; Suckling L; Goetzmann B; Siciliano V; MacDonald JT; Jensen K; Freemont PS
    ACS Synth Biol; 2020 Jan; 9(1):144-156. PubMed ID: 31899623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase.
    Li J; Lawton TJ; Kostecki JS; Nisthal A; Fang J; Mayo SL; Rosenzweig AC; Jewett MC
    Biotechnol J; 2016 Feb; 11(2):212-8. PubMed ID: 26356243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Cells to Cell-Free Protein Synthesis within 24 Hours Using Cell-Free Autoinduction Workflow.
    Smith PEJ; Slouka T; Oza JP
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology.
    Levine MZ; Gregorio NE; Jewett MC; Watts KR; Oza JP
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions.
    Colant N; Melinek B; Teneb J; Goldrick S; Rosenberg W; Frank S; Bracewell DG
    Biotechnol Prog; 2021 Jan; 37(1):e3062. PubMed ID: 32761750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput preparation methods of crude extract for robust cell-free protein synthesis.
    Kwon YC; Jewett MC
    Sci Rep; 2015 Mar; 5():8663. PubMed ID: 25727242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing and Improving Reaction Times for
    Burrington LR; Watts KR; Oza JP
    ACS Synth Biol; 2021 Aug; 10(8):1821-1829. PubMed ID: 34269580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.