BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29944344)

  • 1. Glucose-Responsive Peptide Coacervates with High Encapsulation Efficiency for Controlled Release of Insulin.
    Lim ZW; Ping Y; Miserez A
    Bioconjug Chem; 2018 Jul; 29(7):2176-2180. PubMed ID: 29944344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery.
    Li X; Fu M; Wu J; Zhang C; Deng X; Dhinakar A; Huang W; Qian H; Ge L
    Acta Biomater; 2017 Mar; 51():294-303. PubMed ID: 28069504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggered release of insulin from glucose-sensitive enzyme multilayer shells.
    Qi W; Yan X; Fei J; Wang A; Cui Y; Li J
    Biomaterials; 2009 May; 30(14):2799-806. PubMed ID: 19203789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.
    Yu J; Zhang Y; Ye Y; DiSanto R; Sun W; Ranson D; Ligler FS; Buse JB; Gu Z
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8260-5. PubMed ID: 26100900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery.
    Jamwal S; Ram B; Ranote S; Dharela R; Chauhan GS
    Int J Biol Macromol; 2019 Feb; 123():968-978. PubMed ID: 30448487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP.
    Zhao Y; Trewyn BG; Slowing II; Lin VS
    J Am Chem Soc; 2009 Jun; 131(24):8398-400. PubMed ID: 19476380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin.
    Tai W; Mo R; Di J; Subramanian V; Gu X; Buse JB; Gu Z
    Biomacromolecules; 2014 Oct; 15(10):3495-502. PubMed ID: 25268758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery.
    Fu M; Zhang C; Dai Y; Li X; Pan M; Huang W; Qian H; Ge L
    Biomater Sci; 2018 May; 6(6):1480-1491. PubMed ID: 29623975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.
    Tan Y; Hoon S; Guerette PA; Wei W; Ghadban A; Hao C; Miserez A; Waite JH
    Nat Chem Biol; 2015 Jul; 11(7):488-95. PubMed ID: 26053298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery.
    Zhang C; Hong S; Liu MD; Yu WY; Zhang MK; Zhang L; Zeng X; Zhang XZ
    J Control Release; 2020 Apr; 320():159-167. PubMed ID: 31978443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-coacervation of modular squid beak proteins - a comparative study.
    Cai H; Gabryelczyk B; Manimekalai MSS; Grüber G; Salentinig S; Miserez A
    Soft Matter; 2017 Nov; 13(42):7740-7752. PubMed ID: 29043368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings.
    Schellekens RC; Stellaard F; Mitrovic D; Stuurman FE; Kosterink JG; Frijlink HW
    J Control Release; 2008 Dec; 132(2):91-8. PubMed ID: 18775755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H
    Hu X; Yu J; Qian C; Lu Y; Kahkoska AR; Xie Z; Jing X; Buse JB; Gu Z
    ACS Nano; 2017 Jan; 11(1):613-620. PubMed ID: 28051306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glucose-mediated insulin release from implantable polymers.
    Brown LR; Edelman ER; Fischel-Ghodsian F; Langer R
    J Pharm Sci; 1996 Dec; 85(12):1341-5. PubMed ID: 8961150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
    Zhao F; Wu D; Yao D; Guo R; Wang W; Dong A; Kong D; Zhang J
    Acta Biomater; 2017 Dec; 64():334-345. PubMed ID: 28974477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin.
    Xia D; He H; Wang Y; Wang K; Zuo H; Gu H; Xu P; Hu Y
    Acta Biomater; 2018 Mar; 69():301-312. PubMed ID: 29421303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery.
    Gu Z; Dang TT; Ma M; Tang BC; Cheng H; Jiang S; Dong Y; Zhang Y; Anderson DG
    ACS Nano; 2013 Aug; 7(8):6758-66. PubMed ID: 23834678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Responsive Coacervate Droplets Formed from Acid-Labile Methylated Polyrotaxanes as an Injectable Protein Carrier.
    Nishida K; Tamura A; Yui N
    Biomacromolecules; 2018 Jun; 19(6):2238-2247. PubMed ID: 29689157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery.
    Shi D; Ran M; Zhang L; Huang H; Li X; Chen M; Akashi M
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13688-97. PubMed ID: 27210795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.