These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29944455)
1. Exploring the metabolic variation between domesticated and wild tetraploid wheat genotypes in response to corn leaf aphid infestation. Chandrasekhar K; Shavit R; Distelfeld A; Christensen SA; Tzin V Plant Signal Behav; 2018; 13(6):e1486148. PubMed ID: 29944455 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. Batyrshina ZS; Yaakov B; Shavit R; Singh A; Tzin V BMC Plant Biol; 2020 Jan; 20(1):19. PubMed ID: 31931716 [TBL] [Abstract][Full Text] [Related]
3. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. Singh A; Dilkes B; Sela H; Tzin V Front Plant Sci; 2021; 12():667820. PubMed ID: 34262579 [TBL] [Abstract][Full Text] [Related]
4. Cereal aphids differently affect benzoxazinoid levels in durum wheat. Shavit R; Batyrshina ZS; Dotan N; Tzin V PLoS One; 2018; 13(12):e0208103. PubMed ID: 30507950 [TBL] [Abstract][Full Text] [Related]
5. The combined impacts of wheat spatial position and phenology on cereal aphid abundance. Batyrshina ZS; Cna'ani A; Rozenberg T; Seifan M; Tzin V PeerJ; 2020; 8():e9142. PubMed ID: 32518724 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis of wheat in response to corn leaf aphid, Jasrotia P; Sharma S; Nagpal M; Kamboj D; Kashyap PL; Kumar S; Mishra CN; Kumar S; Singh GP Front Plant Sci; 2022; 13():989365. PubMed ID: 36507434 [TBL] [Abstract][Full Text] [Related]
7. Prevalence and management of aphids (Hemiptera: Aphididae) in different wheat genotypes and their impact on yield and related traits. Hafeez F; Abbas M; Zia K; Ali S; Farooq M; Arshad M; Iftikhar A; Saleem MJ; Zuan ATK; Li Y; Nasif O; Alharbi SA; Wainwright M; Ansari MJ PLoS One; 2021; 16(10):e0257952. PubMed ID: 34644343 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Rhopalosiphum maidis (Corn Leaf Aphid) Growth on Maize by Virus-Induced Gene Silencing with Sugarcane Mosaic Virus. Chung SH; Jander G Methods Mol Biol; 2022; 2360():139-153. PubMed ID: 34495513 [TBL] [Abstract][Full Text] [Related]
9. The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. Shavit R; Batyrshina ZS; Yaakov B; Florean M; Köllner TG; Tzin V Plant Sci; 2022 Mar; 316():111171. PubMed ID: 35151455 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. Tzin V; Fernandez-Pozo N; Richter A; Schmelz EA; Schoettner M; Schäfer M; Ahern KR; Meihls LN; Kaur H; Huffaker A; Mori N; Degenhardt J; Mueller LA; Jander G Plant Physiol; 2015 Nov; 169(3):1727-43. PubMed ID: 26378100 [TBL] [Abstract][Full Text] [Related]
11. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Betsiashvili M; Ahern KR; Jander G J Exp Bot; 2015 Feb; 66(2):571-8. PubMed ID: 25249072 [TBL] [Abstract][Full Text] [Related]
12. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Sytykiewicz H; Łukasik I; Goławska S; Chrzanowski G Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370193 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. Pingault L; Varsani S; Palmer N; Ray S; Williams WP; Luthe DS; Ali JG; Sarath G; Louis J BMC Plant Biol; 2021 Mar; 21(1):138. PubMed ID: 33726668 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the genetic diversity and population structure of wild barley germplasm against corn leaf aphid, Rhopalosiphum maidis (Fitch). Maanju S; Jasrotia P; Yadav SS; Kashyap PL; Kumar S; Jat MK; Lal C; Sharma P; Singh G; Singh GP Sci Rep; 2023 Oct; 13(1):17313. PubMed ID: 37828115 [TBL] [Abstract][Full Text] [Related]
16. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid. Louis J; Basu S; Varsani S; Castano-Duque L; Jiang V; Williams WP; Felton GW; Luthe DS Plant Physiol; 2015 Sep; 169(1):313-24. PubMed ID: 26253737 [TBL] [Abstract][Full Text] [Related]
17. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sadras V; Vázquez C; Garzo E; Moreno A; Medina S; Taylor J; Fereres A Sci Rep; 2021 Jun; 11(1):12529. PubMed ID: 34131178 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. Zhang Y; Fu Y; Wang Q; Liu X; Li Q; Chen J BMC Genomics; 2020 May; 21(1):339. PubMed ID: 32366323 [TBL] [Abstract][Full Text] [Related]
19. Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. Faris JD; Zhang Q; Chao S; Zhang Z; Xu SS Theor Appl Genet; 2014 Nov; 127(11):2333-48. PubMed ID: 25186168 [TBL] [Abstract][Full Text] [Related]
20. Virus-induced gene silencing suggests (1,3;1,4)-β-glucanase is a susceptibility factor in the compatible russian wheat aphid-wheat interaction. Anderson VA; Haley SD; Peairs FB; van Eck L; Leach JE; Lapitan NL Mol Plant Microbe Interact; 2014 Sep; 27(9):913-22. PubMed ID: 24964057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]