BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29944459)

  • 1. Role of TAF15b in transcriptional regulation of autonomous pathway for flowering.
    Eom H; Lee I
    Plant Signal Behav; 2018; 13(7):e1471300. PubMed ID: 29944459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Eom H; Park SJ; Kim MK; Kim H; Kang H; Lee I
    Plant J; 2018 Jan; 93(1):79-91. PubMed ID: 29086456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis.
    Xiao J; Li C; Xu S; Xing L; Xu Y; Chong K
    Plant Physiol; 2015 Nov; 169(3):2102-17. PubMed ID: 26392261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time.
    Simpson GG
    Curr Opin Plant Biol; 2004 Oct; 7(5):570-4. PubMed ID: 15337100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C.
    Ripoll JJ; Rodríguez-Cazorla E; González-Reig S; Andújar A; Alonso-Cantabrana H; Perez-Amador MA; Carbonell J; Martínez-Laborda A; Vera A
    Dev Biol; 2009 Sep; 333(2):251-62. PubMed ID: 19576878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis.
    Choi K; Kim S; Kim SY; Kim M; Hyun Y; Lee H; Choe S; Kim SG; Michaels S; Lee I
    Plant Cell; 2005 Oct; 17(10):2647-60. PubMed ID: 16155178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis.
    Yoo SK; Wu X; Lee JS; Ahn JH
    Plant J; 2011 Jan; 65(1):62-76. PubMed ID: 21175890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    Kong X; Luo X; Qu GP; Liu P; Jin JB
    J Integr Plant Biol; 2017 Jan; 59(1):15-29. PubMed ID: 27925396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation.
    Wu Z; Ietswaart R; Liu F; Yang H; Howard M; Dean C
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):218-23. PubMed ID: 26699513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DELLA proteins interact with FLC to repress flowering transition.
    Li M; An F; Li W; Ma M; Feng Y; Zhang X; Guo H
    J Integr Plant Biol; 2016 Jul; 58(7):642-55. PubMed ID: 26584710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana.
    Tang Q; Guittard-Crilat E; Maldiney R; Habricot Y; Miginiac E; Bouly JP; Lebreton S
    Planta; 2016 Apr; 243(4):909-23. PubMed ID: 26721646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC.
    Reeves PH; Murtas G; Dash S; Coupland G
    Development; 2002 Dec; 129(23):5349-61. PubMed ID: 12403707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Topoisomerase Iα Affects the Floral Transition.
    Gong X; Shen L; Peng YZ; Gan Y; Yu H
    Plant Physiol; 2017 Jan; 173(1):642-654. PubMed ID: 27837087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of plant CBP/p300-like genes in the regulation of flowering time.
    Han SK; Song JD; Noh YS; Noh B
    Plant J; 2007 Jan; 49(1):103-14. PubMed ID: 17144897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of FLOWERING LOCUS C.
    Sang S; Chen Y; Yang Q; Wang P
    J Exp Bot; 2017 Dec; 68(21-22):5787-5800. PubMed ID: 29161428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic cotranscriptional regulation through ARGONAUTE1 and the THO/TREX complex orchestrates
    Xu C; Fang X; Lu T; Dean C
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34789567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modifications of FLOWERING LOCUS C modulate its activity.
    Kwak JS; Son GH; Song JT; Seo HS
    J Exp Bot; 2017 Jan; 68(3):383-389. PubMed ID: 28204510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis.
    Yu X; Martin PGP; Zhang Y; Trinidad JC; Xu F; Huang J; Thum KE; Li K; Zhao S; Gu Y; Wang X; Michaels SD
    Curr Biol; 2021 Dec; 31(23):5377-5384.e5. PubMed ID: 34666004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis.
    Mateos JL; Madrigal P; Tsuda K; Rawat V; Richter R; Romera-Branchat M; Fornara F; Schneeberger K; Krajewski P; Coupland G
    Genome Biol; 2015 Feb; 16(1):31. PubMed ID: 25853185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C.
    Kim S; Choi K; Park C; Hwang HJ; Lee I
    Plant Cell; 2006 Nov; 18(11):2985-98. PubMed ID: 17138694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.