BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29944896)

  • 1. Human cathepsins K, L, and S: Related proteases, but unique fibrinolytic activity.
    Douglas SA; Lamothe SE; Singleton TS; Averett RD; Platt MO
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):1925-1932. PubMed ID: 29944896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational predictions of cysteine cathepsin-mediated fibrinogen proteolysis.
    Ferrall-Fairbanks MC; West DM; Douglas SA; Averett RD; Platt MO
    Protein Sci; 2018 Mar; 27(3):714-724. PubMed ID: 29266558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of fibrin degradation with plasmin, miniplasmin, neurophil leukocyte elastase and cathepsin G.
    Kolev K; Komorowicz E; Owen WG; Machovich R
    Thromb Haemost; 1996 Jan; 75(1):140-6. PubMed ID: 8713793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V.
    Platt MO
    Methods Mol Biol; 2017; 1626():239-252. PubMed ID: 28608217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential, but not Concurrent, Incubation of Cathepsin K and L with Type I Collagen Results in Extended Proteolysis.
    Parks AN; Nahata J; Edouard NE; Temenoff JS; Platt MO
    Sci Rep; 2019 Apr; 9(1):5399. PubMed ID: 30931961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues.
    Wilder CL; Park KY; Keegan PM; Platt MO
    Arch Biochem Biophys; 2011 Dec; 516(1):52-7. PubMed ID: 21982919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fibrin(ogen)olytic properties of cathepsin D.
    Simon DI; Ezratty AM; Loscalzo J
    Biochemistry; 1994 May; 33(21):6555-63. PubMed ID: 8204591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasciola hepatica cathepsin L proteinase cleaves fibrinogen and produces a novel type of fibrin clot.
    Dowd AJ; McGonigle S; Dalton JP
    Eur J Biochem; 1995 Aug; 232(1):241-6. PubMed ID: 7556157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis.
    Cone SJ; Fuquay AT; Litofsky JM; Dement TC; Carolan CA; Hudson NE
    Acta Biomater; 2020 Apr; 107():164-177. PubMed ID: 32105833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional evaluation of the structural features of proteases and their substrate in fibrin surface degradation.
    Kolev K; Tenekedjiev K; Komorowicz E; Machovich R
    J Biol Chem; 1997 May; 272(21):13666-75. PubMed ID: 9153217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptide LL-37 Is Both a Substrate of Cathepsins S and K and a Selective Inhibitor of Cathepsin L.
    Andrault PM; Samsonov SA; Weber G; Coquet L; Nazmi K; Bolscher JG; Lalmanach AC; Jouenne T; Brömme D; Pisabarro MT; Lalmanach G; Lecaille F
    Biochemistry; 2015 May; 54(17):2785-98. PubMed ID: 25884905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmin-mediated fibrinolysis by variant recombinant tissue plasminogen activators.
    Urano S; Metzger AR; Castellino FJ
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2568-71. PubMed ID: 2523073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative pathway for fibrinolysis. I. The cleavage of fibrinogen by leukocyte proteases at physiologic pH.
    Plow EF; Edgington TS
    J Clin Invest; 1975 Jul; 56(1):30-8. PubMed ID: 237938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation.
    Keegan PM; Wilder CL; Platt MO
    Mol Cell Biochem; 2012 Aug; 367(1-2):65-72. PubMed ID: 22562303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elastase-mediated pathway of fibrinolysis.
    Machovich R; Owen WG
    Blood Coagul Fibrinolysis; 1990; 1(1):79-90. PubMed ID: 2151710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells.
    Wilder CL; Walton C; Watson V; Stewart FAA; Johnson J; Peyton SR; Payne CK; Odero-Marah V; Platt MO
    Int J Biochem Cell Biol; 2016 Oct; 79():199-208. PubMed ID: 27592448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasminogen hydrolysis by cathepsin S and identification of derived peptides as selective substrate for cathepsin V and cathepsin L inhibitor.
    Coppini LP; Barros NM; Oliveira M; Hirata IY; Alves MF; Paschoalin T; Assis DM; Juliano MA; Puzer L; Brömme D; Carmona AK
    Biol Chem; 2010 May; 391(5):561-70. PubMed ID: 20302511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity.
    Bailleul G; Kravtzoff A; Joulin-Giet A; Lecaille F; Labas V; Meudal H; Loth K; Teixeira-Gomes AP; Gilbert FB; Coquet L; Jouenne T; Brömme D; Schouler C; Landon C; Lalmanach G; Lalmanach AC
    PLoS One; 2016; 11(8):e0161573. PubMed ID: 27561012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S.
    Vizovišek M; Vidmar R; Van Quickelberghe E; Impens F; Andjelković U; Sobotič B; Stoka V; Gevaert K; Turk B; Fonović M
    Proteomics; 2015 Jul; 15(14):2479-90. PubMed ID: 25626674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kininogen-derived peptides for investigating the putative vasoactive properties of human cathepsins K and L.
    Desmazes C; Galineau L; Gauthier F; Brömme D; Lalmanach G
    Eur J Biochem; 2003 Jan; 270(1):171-8. PubMed ID: 12492488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.