BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29944923)

  • 1. Descriptive pilot study of vividness and temporal equivalence during motor imagery training after quadriplegia.
    Mateo S; Reilly KT; Collet C; Rode G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):300-308. PubMed ID: 29944923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study.
    Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G
    Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroplasticity of prehensile neural networks after quadriplegia.
    Di Rienzo F; Guillot A; Mateo S; Daligault S; Delpuech C; Rode G; Collet C
    Neuroscience; 2014 Aug; 274():82-92. PubMed ID: 24857709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age and gender differences in motor imagery.
    Subirats L; Allali G; Briansoulet M; Salle JY; Perrochon A
    J Neurol Sci; 2018 Aug; 391():114-117. PubMed ID: 30103958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal aging and motor imagery vividness: implications for mental practice training in rehabilitation.
    Malouin F; Richards CL; Durand A
    Arch Phys Med Rehabil; 2010 Jul; 91(7):1122-7. PubMed ID: 20537312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.
    Lebon F; Horn U; Domin M; Lotze M
    Hum Brain Mapp; 2018 Apr; 39(4):1805-1813. PubMed ID: 29322583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical assessment of motor imagery after stroke.
    Malouin F; Richards CL; Durand A; Doyon J
    Neurorehabil Neural Repair; 2008; 22(4):330-40. PubMed ID: 18326057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in accuracy and vividness of motor imagery in children with and without Developmental Coordination Disorder.
    Fuchs CT; Caçola P
    Hum Mov Sci; 2018 Aug; 60():234-241. PubMed ID: 29966867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery.
    Saimpont A; Malouin F; Tousignant B; Jackson PL
    Brain Res; 2015 Feb; 1597():196-209. PubMed ID: 25481412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A different point of view: the evaluation of motor imagery perspectives in patients with sensorimotor impairments in a longitudinal study.
    Gäumann S; Gerber RS; Suica Z; Wandel J; Schuster-Amft C
    BMC Neurol; 2021 Jul; 21(1):297. PubMed ID: 34315411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex.
    Zabicki A; de Haas B; Zentgraf K; Stark R; Munzert J; Krüger B
    Neuroimage; 2019 Aug; 197():273-283. PubMed ID: 31051294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery.
    Guilbert J; Fernandez J; Molina M; Morin MF; Alamargot D
    Psychol Res; 2021 Sep; 85(6):2237-2247. PubMed ID: 32743730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External cueing improves motor imagery quality in patients with Parkinson disease.
    Heremans E; Nieuwboer A; Feys P; Vercruysse S; Vandenberghe W; Sharma N; Helsen WF
    Neurorehabil Neural Repair; 2012 Jan; 26(1):27-35. PubMed ID: 21778409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of imagery capacity in motor performance improvement.
    Ruffino C; Papaxanthis C; Lebon F
    Exp Brain Res; 2017 Oct; 235(10):3049-3057. PubMed ID: 28733754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does hypnotic assessment predict the functional equivalence between motor imagery and action?
    Ruggirello S; Campioni L; Piermanni S; Sebastiani L; Santarcangelo EL
    Brain Cogn; 2019 Nov; 136():103598. PubMed ID: 31472426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofeedback-guided kinesthetic motor imagery training in Parkinson's disease: Randomized trial.
    Tinaz S; Kamel S; Aravala SS; Elfil M; Bayoumi A; Patel A; Scheinost D; Sinha R; Hampson M
    Neuroimage Clin; 2022; 34():102980. PubMed ID: 35247729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroplasticity of imagined wrist actions after spinal cord injury: a pilot study.
    Di Rienzo F; Guillot A; Mateo S; Daligault S; Delpuech C; Rode G; Collet C
    Exp Brain Res; 2015 Jan; 233(1):291-302. PubMed ID: 25300960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vividness and accuracy: Two independent aspects of motor imagery.
    Mizuguchi N; Suezawa M; Kanosue K
    Neurosci Res; 2019 Oct; 147():17-25. PubMed ID: 30605697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tongue and mouth imagery questionnaire (TMIQ) for assessing motor imagery vividness of the temporomandibular region: A reliability and validity case-control study.
    Alvarado C; Arminjon A; Damieux-Verdeaux C; Lhotte C; Condemine C; Mateo S
    J Oral Rehabil; 2022 Apr; 49(4):381-390. PubMed ID: 35108417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.