These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29944923)

  • 41. Motor imagery training in patients with chronic neglect: a pilot study.
    Leifert-Fiebach G; Welfringer A; Babinsky R; Brandt T
    NeuroRehabilitation; 2013; 32(1):43-58. PubMed ID: 23422458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.
    Mateo S; Revol P; Fourtassi M; Rossetti Y; Collet C; Rode G
    Spinal Cord; 2013 Feb; 51(2):144-9. PubMed ID: 22945744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rehabilitation of the elbow extension with motor imagery in a patient with quadriplegia after tendon transfer.
    Grangeon M; Guillot A; Sancho PO; Picot M; Revol P; Rode G; Collet C
    Arch Phys Med Rehabil; 2010 Jul; 91(7):1143-6. PubMed ID: 20599055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motor inhibition during motor imagery: a MEG study with a quadriplegic patient.
    Di Rienzo F; Guillot A; Daligault S; Delpuech C; Rode G; Collet C
    Neurocase; 2014; 20(5):524-39. PubMed ID: 23998364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke.
    Butler AJ; Page SJ
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S2-11. PubMed ID: 17140874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training.
    Enzinger C; Ropele S; Fazekas F; Loitfelder M; Gorani F; Seifert T; Reiter G; Neuper C; Pfurtscheller G; Müller-Putz G
    Exp Brain Res; 2008 Sep; 190(2):215-23. PubMed ID: 18592230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw.
    Weber E; Doppelmayr M
    Int J Psychophysiol; 2016 Dec; 110():137-145. PubMed ID: 27825901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facilitation of motor imagery through movement-related cueing.
    Heremans E; Helsen WF; De Poel HJ; Alaerts K; Meyns P; Feys P
    Brain Res; 2009 Jun; 1278():50-8. PubMed ID: 19406111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility of motor imagery and effects of activating and relaxing practice on autonomic functions in healthy young adults: A randomised, controlled, assessor-blinded, pilot trial.
    Kahraman T; Kaya DO; Isik T; Gultekin SC; Seebacher B
    PLoS One; 2021; 16(7):e0254666. PubMed ID: 34255812
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revisiting Motor Imagery Guidelines in a Tropical Climate: The Time-of-Day Effect.
    Hatchi V; Guillot A; Robin N
    Int J Environ Res Public Health; 2023 May; 20(10):. PubMed ID: 37239581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visual versus kinesthetic mental imagery: efficacy for the retention and transfer of a closed motor skill in young children.
    Taktek K; Zinsser N; St-John B
    Can J Exp Psychol; 2008 Sep; 62(3):174-87. PubMed ID: 18778146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Action observation and motor imagery improve motor imagery abilities in patients with Parkinson's disease - A functional MRI study.
    Sarasso E; Gardoni A; Zenere L; Canu E; Basaia S; Pelosin E; Volontè MA; Filippi M; Agosta F
    Parkinsonism Relat Disord; 2023 Nov; 116():105858. PubMed ID: 37774517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of levodopa on vividness of motor imagery in Parkinson disease.
    Peterson DS; Pickett KA; Earhart GM
    J Parkinsons Dis; 2012; 2(2):127-33. PubMed ID: 23939437
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor learning without doing: trial-by-trial improvement in motor performance during mental training.
    Gentili R; Han CE; Schweighofer N; Papaxanthis C
    J Neurophysiol; 2010 Aug; 104(2):774-83. PubMed ID: 20538766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury.
    Mateo S; Di Rienzo F; Bergeron V; Guillot A; Collet C; Rode G
    Front Behav Neurosci; 2015; 9():234. PubMed ID: 26441568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motor imagery in response to fake feedback measured by functional near-infrared spectroscopy.
    Holper L; Wolf M
    Neuroimage; 2010 Mar; 50(1):190-7. PubMed ID: 20026278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study.
    Vučković A; Wallace L; Allan DB
    J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age differences in the relationship between visual movement imagery and performance on kinesthetic acuity tests.
    Livesey DJ
    Dev Psychol; 2002 Mar; 38(2):279-87. PubMed ID: 11881762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Skill acquisition via motor imagery relies on both motor and perceptual learning.
    Ingram TG; Kraeutner SN; Solomon JP; Westwood DA; Boe SG
    Behav Neurosci; 2016 Apr; 130(2):252-60. PubMed ID: 26854741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The reliability and validity study of the Kinesthetic and Visual Imagery Questionnaire in individuals with multiple sclerosis.
    Tabrizi YM; Zangiabadi N; Mazhari S; Zolala F
    Braz J Phys Ther; 2013; 17(6):588-92. PubMed ID: 24271091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.