BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29945032)

  • 1. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.
    He G; Zhang T; Zheng F; Zhang Q
    Water Res; 2018 Oct; 143():165-175. PubMed ID: 29945032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the global resilience of water quality sensor placement strategies within water distribution systems.
    Zhang Q; Zheng F; Kapelan Z; Savic D; He G; Ma Y
    Water Res; 2020 Apr; 172():115527. PubMed ID: 32004913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllability analysis as a pre-selection method for sensor placement in water distribution systems.
    Diao K; Rauch W
    Water Res; 2013 Oct; 47(16):6097-108. PubMed ID: 23948563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal sensor placement for detecting organophosphate intrusions into water distribution systems.
    Ohar Z; Lahav O; Ostfeld A
    Water Res; 2015 Apr; 73():193-203. PubMed ID: 25662513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating fuzzy logic with Pearson correlation to optimize contaminant detection in water distribution system with uncertainty analyses.
    Osmani SA; Banik BK; Ali H
    Environ Monit Assess; 2019 Jun; 191(7):441. PubMed ID: 31203453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.
    Oliker N; Ostfeld A
    Water Res; 2014 Mar; 51():234-45. PubMed ID: 24268294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated logit model for contamination event detection in water distribution systems.
    Housh M; Ostfeld A
    Water Res; 2015 May; 75():210-23. PubMed ID: 25770443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-objective optimization of hydrant flushing in a water distribution system using a fast hybrid technique.
    Shoorangiz M; Nikoo MR; Šimůnek J; Gandomi AH; Adamowski JF; Al-Wardy M
    J Environ Manage; 2023 May; 334():117463. PubMed ID: 36801802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contamination event detection using multiple types of conventional water quality sensors in source water.
    Liu S; Che H; Smith K; Chen L
    Environ Sci Process Impacts; 2014 Aug; 16(8):2028-38. PubMed ID: 24953418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination source identification in water distribution networks using convolutional neural network.
    Sun L; Yan H; Xin K; Tao T
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36786-36797. PubMed ID: 31745764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using complex network analysis for water quality assessment in large water distribution systems.
    Sitzenfrei R
    Water Res; 2021 Aug; 201():117359. PubMed ID: 34171648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A canonical correlation analysis based method for contamination event detection in water sources.
    Li R; Liu S; Smith K; Che H
    Environ Sci Process Impacts; 2016 Jun; 18(6):658-66. PubMed ID: 27264637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].
    Liu SM; Wu X; Ouyang LY
    Huan Jing Ke Xue; 2013 Aug; 34(8):3108-12. PubMed ID: 24191555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep fuzzy mapping nonparametric model for real-time demand estimation in water distribution systems: A new perspective.
    Zhang Q; Yang J; Zhang W; Kumar M; Liu J; Liu J; Li X
    Water Res; 2023 Aug; 241():120145. PubMed ID: 37270943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk-based framework for optimizing residual chlorine in large water distribution systems.
    Sharif MN; Farahat A; Haider H; Al-Zahrani MA; Rodriguez MJ; Sadiq R
    Environ Monit Assess; 2017 Jul; 189(7):307. PubMed ID: 28573352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time contamination zoning in water distribution networks for contamination emergencies: a case study.
    Bazargan-Lari MR; Taghipour S; Habibi M
    Environ Monit Assess; 2021 May; 193(6):336. PubMed ID: 33973066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multivariate based event detection method and performance comparison with two baseline methods.
    Liu S; Smith K; Che H
    Water Res; 2015 Sep; 80():109-18. PubMed ID: 25996758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management and health risk assessment of chemical contamination events in water distribution systems using PSO.
    Moghaddam A; Afsharnia M; Mokhtari M; Peirovi-Minaee R
    Environ Monit Assess; 2022 Apr; 194(5):362. PubMed ID: 35416506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.