These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29945188)

  • 1. ncdDetect2: improved models of the site-specific mutation rate in cancer and driver detection with robust significance evaluation.
    Juul M; Madsen T; Guo Q; Bertl J; Hobolth A; Kellis M; Pedersen JS
    Bioinformatics; 2019 Jan; 35(2):189-199. PubMed ID: 29945188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
    Bertl J; Guo Q; Juul M; Besenbacher S; Nielsen MM; Hornshøj H; Pedersen JS; Hobolth A
    BMC Bioinformatics; 2018 Apr; 19(1):147. PubMed ID: 29673314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate.
    Juul M; Bertl J; Guo Q; Nielsen MM; Świtnicki M; Hornshøj H; Madsen T; Hobolth A; Pedersen JS
    Elife; 2017 Mar; 6():. PubMed ID: 28362259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined burden and functional impact tests for cancer driver discovery using DriverPower.
    Shuai S; ; Gallinger S; Stein LD;
    Nat Commun; 2020 Feb; 11(1):734. PubMed ID: 32024818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
    Liu S; Liu J; Xie Y; Zhai T; Hinderer EW; Stromberg AJ; Vanderford NL; Kolesar JM; Moseley HNB; Chen L; Liu C; Wang C
    Bioinformatics; 2021 Jun; 37(9):1189-1197. PubMed ID: 33165532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOAT: efficient detection of highly mutated regions with the Mutations Overburdening Annotations Tool.
    Lochovsky L; Zhang J; Gerstein M
    Bioinformatics; 2018 Mar; 34(6):1031-1033. PubMed ID: 29121169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer.
    Shinde J; Bayard Q; Imbeaud S; Hirsch TZ; Liu F; Renault V; Zucman-Rossi J; Letouzé E
    Bioinformatics; 2018 Oct; 34(19):3380-3381. PubMed ID: 29771315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation.
    Xu Y; Guo X; Sun J; Zhao Z
    Bioinformatics; 2015 Jan; 31(1):84-93. PubMed ID: 25192743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revana: a comprehensive tool for regulatory variant analysis and visualization of cancer genomes.
    Ulrich E; Pfister SM; Jäger N
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. wenda_gpu: fast domain adaptation for genomic data.
    Hippen AA; Crawford J; Gardner JR; Greene CS
    Bioinformatics; 2022 Nov; 38(22):5129-5130. PubMed ID: 36193991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRODIGY: personalized prioritization of driver genes.
    Dinstag G; Shamir R
    Bioinformatics; 2020 Mar; 36(6):1831-1839. PubMed ID: 31681944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO.
    Lee G; Liang JW; Zhang Q; Huang T; Choirat C; Parmigiani G; Braun D
    Elife; 2021 Aug; 10():. PubMed ID: 34406119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heuristic algorithm solving the mutual-exclusivity-sorting problem.
    Vinceti A; Trastulla L; Perron U; Raiconi A; Iorio F
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36669133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On measuring selection in cancer from subclonal mutation frequencies.
    Bozic I; Paterson C; Waclaw B
    PLoS Comput Biol; 2019 Sep; 15(9):e1007368. PubMed ID: 31557163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.