BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29945209)

  • 1. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity.
    Polaski JT; Kletzien OA; Drogalis LK; Batey RT
    Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.
    Polaski JT; Webster SM; Johnson JE; Batey RT
    J Biol Chem; 2017 Jul; 292(28):11650-11658. PubMed ID: 28483920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions.
    Hansen LN; Kletzien OA; Urquijo M; Schwanz LT; Batey RT
    J Mol Biol; 2023 May; 435(10):168070. PubMed ID: 37003469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
    Weinberg Z; Regulski EE; Hammond MC; Barrick JE; Yao Z; Ruzzo WL; Breaker RR
    RNA; 2008 May; 14(5):822-8. PubMed ID: 18369181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.
    Stoddard CD; Widmann J; Trausch JJ; Marcano-Velázquez JG; Knight R; Batey RT
    J Mol Biol; 2013 May; 425(10):1596-611. PubMed ID: 23485418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
    Kim JN; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16092-7. PubMed ID: 17911257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches.
    Lennon SR; Batey RT
    J Mol Biol; 2022 Sep; 434(18):167585. PubMed ID: 35427633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of an atypical cobalamin riboswitch reveals RNA structural adaptability as basis for promiscuous ligand binding.
    Chan CW; Mondragón A
    Nucleic Acids Res; 2020 Jul; 48(13):7569-7583. PubMed ID: 32544228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA.
    Knappenberger AJ; Reiss CW; Strobel SA
    Elife; 2018 Jun; 7():. PubMed ID: 29877798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch.
    Polaski JT; Holmstrom ED; Nesbitt DJ; Batey RT
    Cell Rep; 2016 May; 15(5):1100-1110. PubMed ID: 27117410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for diversity in the SAM clan of riboswitches.
    Trausch JJ; Xu Z; Edwards AL; Reyes FE; Ross PE; Knight R; Batey RT
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6624-9. PubMed ID: 24753586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.