BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29945209)

  • 21. Conformational Ensemble of
    Ma B; Bai G; Nussinov R; Ding J; Wang YX
    J Phys Chem B; 2021 Mar; 125(10):2589-2596. PubMed ID: 33683130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.
    Fujita Y; Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2012 Feb; 113(2):141-5. PubMed ID: 22074990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
    Smith KD; Shanahan CA; Moore EL; Simon AC; Strobel SA
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7757-62. PubMed ID: 21518891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches.
    Prychyna O; Dahabieh MS; Chao J; O'Neill MA
    Biopolymers; 2009 Nov; 91(11):953-65. PubMed ID: 19603494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
    Matyjasik MM; Batey RT
    Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. B12 cofactors directly stabilize an mRNA regulatory switch.
    Johnson JE; Reyes FE; Polaski JT; Batey RT
    Nature; 2012 Dec; 492(7427):133-7. PubMed ID: 23064232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins.
    Lennon SR; Wierzba AJ; Siwik SH; Gryko D; Palmer AE; Batey RT
    ACS Chem Biol; 2023 May; 18(5):1136-1147. PubMed ID: 37094176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
    Wakeman CA; Ramesh A; Winkler WC
    J Mol Biol; 2009 Sep; 392(3):723-35. PubMed ID: 19619558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch.
    Kulshina N; Edwards TE; Ferré-D'Amaré AR
    RNA; 2010 Jan; 16(1):186-96. PubMed ID: 19948769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control.
    Lussier A; Bastet L; Chauvier A; Lafontaine DA
    J Biol Chem; 2015 Oct; 290(44):26739-51. PubMed ID: 26370077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
    Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS
    RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from
    Bahoua B; Sevdalis SE; Soto AM
    Biochemistry; 2021 Sep; 60(37):2781-2794. PubMed ID: 34472844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.