These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 29945499)
1. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction. Turki T; Wei Z; Wang JTL J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499 [TBL] [Abstract][Full Text] [Related]
2. Clinical intelligence: New machine learning techniques for predicting clinical drug response. Turki T; Wang JTL Comput Biol Med; 2019 Apr; 107():302-322. PubMed ID: 30771879 [TBL] [Abstract][Full Text] [Related]
3. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794 [TBL] [Abstract][Full Text] [Related]
4. A link prediction approach to cancer drug sensitivity prediction. Turki T; Wei Z BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192 [TBL] [Abstract][Full Text] [Related]
5. Computational Prediction of Drug-Target Interactions via Ensemble Learning. Ezzat A; Wu M; Li X; Kwoh CK Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446 [TBL] [Abstract][Full Text] [Related]
6. SNRFCB: sub-network based random forest classifier for predicting chemotherapy benefit on survival for cancer treatment. Shi M; He J Mol Biosyst; 2016 Apr; 12(4):1214-23. PubMed ID: 26864276 [TBL] [Abstract][Full Text] [Related]
7. Clinical Drug Response Prediction by Using a Lq Penalized Network-Constrained Logistic Regression Method. Huang HH; Dai JG; Liang Y Cell Physiol Biochem; 2018; 51(5):2073-2084. PubMed ID: 30522095 [TBL] [Abstract][Full Text] [Related]
8. Learning approaches to improve prediction of drug sensitivity in breast cancer patients. Turki T; Zhi Wei Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3314-3320. PubMed ID: 28269014 [TBL] [Abstract][Full Text] [Related]
9. Application of transfer learning for cancer drug sensitivity prediction. Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023 [TBL] [Abstract][Full Text] [Related]
10. Prediction of anti-cancer drug response by kernelized multi-task learning. Tan M Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382 [TBL] [Abstract][Full Text] [Related]
11. A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients. Cheng L; Schneider BP; Li L J Am Med Inform Assoc; 2016 Jul; 23(4):741-9. PubMed ID: 27107440 [TBL] [Abstract][Full Text] [Related]
12. Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response. Venezian Povoa L; Ribeiro CHC; Silva ITD PLoS One; 2021; 16(7):e0254596. PubMed ID: 34320000 [TBL] [Abstract][Full Text] [Related]
13. Machine learning prediction of oncology drug targets based on protein and network properties. Dezső Z; Ceccarelli M BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238 [TBL] [Abstract][Full Text] [Related]
14. Drug-target interaction prediction using ensemble learning and dimensionality reduction. Ezzat A; Wu M; Li XL; Kwoh CK Methods; 2017 Oct; 129():81-88. PubMed ID: 28549952 [TBL] [Abstract][Full Text] [Related]
15. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Jiang HJ; Huang YA; You ZH Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871 [TBL] [Abstract][Full Text] [Related]
16. Pipeline design to identify key features and classify the chemotherapy response on lung cancer patients using large-scale genetic data. Valdés MG; Galván-Femenía I; Ripoll VR; Duran X; Yokota J; Gavaldà R; Rafael-Palou X; de Cid R BMC Syst Biol; 2018 Nov; 12(Suppl 5):97. PubMed ID: 30458782 [TBL] [Abstract][Full Text] [Related]
17. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bandyopadhyay S; Mitra R Bioinformatics; 2009 Oct; 25(20):2625-31. PubMed ID: 19692556 [TBL] [Abstract][Full Text] [Related]
18. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. Ai C; Kong L J Genet Genomics; 2018 Sep; 45(9):489-504. PubMed ID: 30292791 [TBL] [Abstract][Full Text] [Related]
19. A dropout-regularized classifier development approach optimized for precision medicine test discovery from omics data. Roder J; Oliveira C; Net L; Tsypin M; Linstid B; Roder H BMC Bioinformatics; 2019 Jun; 20(1):325. PubMed ID: 31196002 [TBL] [Abstract][Full Text] [Related]
20. Expression Profiles of the Individual Genes Corresponding to the Genes Generated by Cytotoxicity Experiments with Bortezomib in Multiple Myeloma. Ghasemi M; Alpsoy S; Türk S; Malkan ÜY; Atakan Ş; Haznedaroğlu İC; Güneş G; Gündüz M; Yılmaz B; Etgül S; Aydın S; Aslan T; Sayınalp N; Aksu S; Demiroğlu H; Özcebe OI; Büyükaşık Y; Göker H Turk J Haematol; 2016 Dec; 33(4):286-292. PubMed ID: 27095044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]