These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29946033)

  • 1. Catalytic iron-carbene intermediate revealed in a cytochrome
    Lewis RD; Garcia-Borràs M; Chalkley MJ; Buller AR; Houk KN; Kan SBJ; Arnold FH
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7308-7313. PubMed ID: 29946033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life.
    Kan SB; Lewis RD; Chen K; Arnold FH
    Science; 2016 Nov; 354(6315):1048-1051. PubMed ID: 27885032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic and Biocatalytic Iron Porphyrin Carbene Formation: Effects of Binding Mode, Carbene Substituent, Porphyrin Substituent, and Protein Axial Ligand.
    Khade RL; Zhang Y
    J Am Chem Soc; 2015 Jun; 137(24):7560-3. PubMed ID: 26067900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbene generation by cytochromes and electronic structure of heme-iron-porphyrin-carbene complex: a quantum chemical study.
    Taxak N; Patel B; Bharatam PV
    Inorg Chem; 2013 May; 52(9):5097-109. PubMed ID: 23560646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution.
    Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y
    J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement.
    Pujol M; Degeilh L; Sauty de Chalon T; Réglier M; Simaan AJ; Decroos C
    J Inorg Biochem; 2024 Nov; 260():112688. PubMed ID: 39111220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Cytochrome
    Chen K; Huang X; Zhang SQ; Zhou AZ; Kan SBJ; Hong X; Arnold FH
    Synlett; 2019 Mar; 30(4):378-382. PubMed ID: 30930550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Insights into the Mechanism and Stereoselectivity of Olefin Cyclopropanation Catalyzed by Two Engineered Cytochrome P450 Enzymes.
    Su H; Ma G; Liu Y
    Inorg Chem; 2018 Sep; 57(18):11738-11745. PubMed ID: 30156099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically programmed chiral organoborane synthesis.
    Kan SBJ; Huang X; Gumulya Y; Chen K; Arnold FH
    Nature; 2017 Dec; 552(7683):132-136. PubMed ID: 29186119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective N-H insertion catalyzed by a de novo carbene transferase.
    Stenner R; Anderson JLR
    Biotechnol Appl Biochem; 2020 Jul; 67(4):527-535. PubMed ID: 32277840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of myoglobin-based carbene transferases for monoterpene derivatization.
    Sun Y; Tang Y; Zhou J; Guo B; Yuan F; Yao B; Yu Y; Li C
    Biochem Biophys Res Commun; 2024 Aug; 722():150160. PubMed ID: 38795453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 A resolution of rhodothermus marinus cytochrome c.
    Stelter M; Melo AM; Pereira MM; Gomes CM; Hreggvidsson GO; Hjorleifsdottir S; Saraiva LM; Teixeira M; Archer M
    Biochemistry; 2008 Nov; 47(46):11953-63. PubMed ID: 18855424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron porphyrin carbenes as catalytic intermediates: structures, Mössbauer and NMR spectroscopic properties, and bonding.
    Khade RL; Fan W; Ling Y; Yang L; Oldfield E; Zhang Y
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7574-8. PubMed ID: 24910004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial metalloenzyme with the kinetics of native enzymes.
    Dydio P; Key HM; Nazarenko A; Rha JY; Seyedkazemi V; Clark DS; Hartwig JF
    Science; 2016 Oct; 354(6308):102-106. PubMed ID: 27846500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantiodivergent α-Amino C-H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s.
    Zhang J; Huang X; Zhang RK; Arnold FH
    J Am Chem Soc; 2019 Jun; 141(25):9798-9802. PubMed ID: 31187993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions.
    Zhang Y
    Chemistry; 2019 Oct; 25(58):13231-13247. PubMed ID: 31306529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping reactive metal-carbene complexes by a bis-pocket porphyrin: X-ray crystal structures of Ru=CHCO(2)Et and trans-[Ru(CHR)(CO)] species and highly selective carbenoid transfer reactions.
    Deng QH; Chen J; Huang JS; Chui SS; Zhu N; Li GY; Che CM
    Chemistry; 2009 Oct; 15(41):10707-12. PubMed ID: 19760736
    [No Abstract]   [Full Text] [Related]  

  • 19. Origin and Control of Chemoselectivity in Cytochrome
    Garcia-Borràs M; Kan SBJ; Lewis RD; Tang A; Jimenez-Osés G; Arnold FH; Houk KN
    J Am Chem Soc; 2021 May; 143(18):7114-7123. PubMed ID: 33909977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of chemical innovation: new enzymes by evolution.
    Arnold FH
    Q Rev Biophys; 2015 Nov; 48(4):404-10. PubMed ID: 26537398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.