BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29946143)

  • 1. In utero nanoparticle delivery for site-specific genome editing.
    Ricciardi AS; Bahal R; Farrelly JS; Quijano E; Bianchi AH; Luks VL; Putman R; López-Giráldez F; Coşkun S; Song E; Liu Y; Hsieh WC; Ly DH; Stitelman DH; Glazer PM; Saltzman WM
    Nat Commun; 2018 Jun; 9(1):2481. PubMed ID: 29946143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Gene-Editing Technique Cures β-Thalassemia in Utero: A novel peptide nucleic acid-based gene-editing technique using a nanoparticle delivery system seemingly cured beta thalassemia in fetal mice.
    Am J Med Genet A; 2018 Oct; 176(10):2052-2053. PubMed ID: 30380190
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery.
    Bahal R; Ali McNeer N; Quijano E; Liu Y; Sulkowski P; Turchick A; Lu YC; Bhunia DC; Manna A; Greiner DL; Brehm MA; Cheng CJ; López-Giráldez F; Ricciardi A; Beloor J; Krause DS; Kumar P; Gallagher PG; Braddock DT; Mark Saltzman W; Ly DH; Glazer PM
    Nat Commun; 2016 Oct; 7():13304. PubMed ID: 27782131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair.
    Economos NG; Oyaghire S; Quijano E; Ricciardi AS; Saltzman WM; Glazer PM
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors.
    McNeer NA; Chin JY; Schleifman EB; Fields RJ; Glazer PM; Saltzman WM
    Mol Ther; 2011 Jan; 19(1):172-80. PubMed ID: 20859257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo.
    McNeer NA; Schleifman EB; Cuthbert A; Brehm M; Jackson A; Cheng C; Anandalingam K; Kumar P; Shultz LD; Greiner DL; Mark Saltzman W; Glazer PM
    Gene Ther; 2013 Jun; 20(6):658-69. PubMed ID: 23076379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
    Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ
    Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing.
    Ricciardi AS; Quijano E; Putman R; Saltzman WM; Glazer PM
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29534473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.
    Bahal R; Quijano E; McNeer NA; Liu Y; Bhunia DC; Lopez-Giraldez F; Fields RJ; Saltzman WM; Ly DH; Glazer PM
    Curr Gene Ther; 2014; 14(5):331-42. PubMed ID: 25174576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing for the β-Hemoglobinopathies.
    Porteus MH
    Adv Exp Med Biol; 2017; 1013():203-217. PubMed ID: 29127682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression.
    Han Y; Tan X; Jin T; Zhao S; Hu L; Zhang W; Kurita R; Nakamura Y; Liu J; Li D; Zhang Z; Fang X; Huang S
    Eur J Pharmacol; 2022 Mar; 918():174788. PubMed ID: 35093321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Therapy and Genome Editing.
    Boulad F; Mansilla-Soto J; Cabriolu A; Rivière I; Sadelain M
    Hematol Oncol Clin North Am; 2018 Apr; 32(2):329-342. PubMed ID: 29458735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac.
    Xie F; Ye L; Chang JC; Beyer AI; Wang J; Muench MO; Kan YW
    Genome Res; 2014 Sep; 24(9):1526-33. PubMed ID: 25096406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies.
    Li C; Georgakopoulou A; Newby GA; Everette KA; Nizamis E; Paschoudi K; Vlachaki E; Gil S; Anderson AK; Koob T; Huang L; Wang H; Kiem HP; Liu DR; Yannaki E; Lieber A
    JCI Insight; 2022 Oct; 7(19):. PubMed ID: 36006707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment.
    Ali G; Tariq MA; Shahid K; Ahmad FJ; Akram J
    Gene Ther; 2021 Feb; 28(1-2):6-15. PubMed ID: 32355226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer delivery systems for site-specific genome editing.
    McNeer NA; Schleifman EB; Glazer PM; Saltzman WM
    J Control Release; 2011 Oct; 155(2):312-6. PubMed ID: 21620910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.