BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 29946163)

  • 1. Modelling Cryptosporidium infection in human small intestinal and lung organoids.
    Heo I; Dutta D; Schaefer DA; Iakobachvili N; Artegiani B; Sachs N; Boonekamp KE; Bowden G; Hendrickx APA; Willems RJL; Peters PJ; Riggs MW; O'Connor R; Clevers H
    Nat Microbiol; 2018 Jul; 3(7):814-823. PubMed ID: 29946163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal organoid/enteroid-based models for Cryptosporidium.
    Bhalchandra S; Lamisere H; Ward H
    Curr Opin Microbiol; 2020 Dec; 58():124-129. PubMed ID: 33113480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Organoids to Study Infectious Host Interactions.
    Lahree A; Gilbert L
    Methods Mol Biol; 2024; 2742():151-164. PubMed ID: 38165622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling
    Seo HH; Han HW; Lee SE; Hong SH; Cho SH; Kim SC; Koo SK; Kim JH
    Emerg Microbes Infect; 2020 Dec; 9(1):1943-1954. PubMed ID: 32820712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two- and Three-Dimensional Bioengineered Human Intestinal Tissue Models for Cryptosporidium.
    Cardenas D; Bhalchandra S; Lamisere H; Chen Y; Zeng XL; Ramani S; Karandikar UC; Kaplan DL; Estes MK; Ward HD
    Methods Mol Biol; 2020; 2052():373-402. PubMed ID: 31452173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased SLC26A3 expression and function in intestinal epithelial cells in response to
    Kumar A; Jayawardena D; Anbazhagan AN; Chatterjee I; Priyamvada S; Alrefai WA; Borthakur A; Dudeja PK
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1205-C1212. PubMed ID: 31483700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development In Vitro and Genetic Tractability.
    Wilke G; Funkhouser-Jones LJ; Wang Y; Ravindran S; Wang Q; Beatty WL; Baldridge MT; VanDussen KL; Shen B; Kuhlenschmidt MS; Kuhlenschmidt TB; Witola WH; Stappenbeck TS; Sibley LD
    Cell Host Microbe; 2019 Jul; 26(1):123-134.e8. PubMed ID: 31231046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages.
    Mirhashemi ME; Noubary F; Chapman-Bonofiglio S; Tzipori S; Huggins GS; Widmer G
    Parasit Vectors; 2018 Mar; 11(1):176. PubMed ID: 29530089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Past and future trends of Cryptosporidium in vitro research.
    Bones AJ; Jossé L; More C; Miller CN; Michaelis M; Tsaousis AD
    Exp Parasitol; 2019 Jan; 196():28-37. PubMed ID: 30521793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species.
    Xu Z; Guo Y; Roellig DM; Feng Y; Xiao L
    BMC Genomics; 2019 May; 20(1):406. PubMed ID: 31117941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptic parasite revealed improved prospects for treatment and control of human cryptosporidiosis through advanced technologies.
    Jex AR; Smith HV; Nolan MJ; Campbell BE; Young ND; Cantacessi C; Gasser RB
    Adv Parasitol; 2011; 77():141-73. PubMed ID: 22137584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal Cryptosporidium sp. infection in the Egyptian tortoise, Testudo kleinmanni.
    Graczyk TK; Cranfield MR; Mann J; Strandberg JD
    Int J Parasitol; 1998 Dec; 28(12):1885-8. PubMed ID: 9925268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minireview: clinical cryptosporidiosis.
    Chalmers RM; Davies AP
    Exp Parasitol; 2010 Jan; 124(1):138-46. PubMed ID: 19545516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptosporidium pathogenicity and virulence.
    Bouzid M; Hunter PR; Chalmers RM; Tyler KM
    Clin Microbiol Rev; 2013 Jan; 26(1):115-34. PubMed ID: 23297262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.
    Ming Z; Gong AY; Wang Y; Zhang XT; Li M; Dolata CE; Chen XM
    Parasitol Res; 2018 Mar; 117(3):831-840. PubMed ID: 29374323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis.
    Alcantara Warren C; Destura RV; Sevilleja JE; Barroso LF; Carvalho H; Barrett LJ; O'Brien AD; Guerrant RL
    J Infect Dis; 2008 Jul; 198(1):143-9. PubMed ID: 18498239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cultivation of cryptosporidium species.
    Arrowood MJ
    Clin Microbiol Rev; 2002 Jul; 15(3):390-400. PubMed ID: 12097247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crypto-Currency: Investing in New Models to Advance the Study of
    Marzook NB; Sateriale A
    Front Cell Infect Microbiol; 2020; 10():587296. PubMed ID: 33312965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Biology of the Intestinal Intracellular Parasite Cryptosporidium.
    Guérin A; Striepen B
    Cell Host Microbe; 2020 Oct; 28(4):509-515. PubMed ID: 33031769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium.
    Hares MF; Tiffney EA; Johnston LJ; Luu L; Stewart CJ; Flynn RJ; Coombes JL
    Parasite Immunol; 2021 Feb; 43(2):e12765. PubMed ID: 32564379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.