BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29946356)

  • 1. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase.
    Peciulyte A; Samuelsson L; Olsson L; McFarland KC; Frickmann J; Østergård L; Halvorsen R; Scott BR; Johansen KS
    Biotechnol Biofuels; 2018; 11():165. PubMed ID: 29946356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H
    Kont R; Pihlajaniemi V; Borisova AS; Aro N; Marjamaa K; Loogen J; Büchs J; Eijsink VGH; Kruus K; Väljamäe P
    Biotechnol Biofuels; 2019; 12():235. PubMed ID: 31624497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass.
    Moon M; Lee JP; Park GW; Lee JS; Park HJ; Min K
    Bioresour Technol; 2022 Sep; 359():127501. PubMed ID: 35753567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials.
    Costa THF; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story?
    Manavalan T; Stepnov AA; Hegnar OA; Eijsink VGH
    Carbohydr Res; 2021 Jul; 505():108350. PubMed ID: 34049079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9.
    Brenelli L; Squina FM; Felby C; Cannella D
    Biotechnol Biofuels; 2018; 11():10. PubMed ID: 29371886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw.
    Zabihi S; Sharafi A; Motamedi H; Esmaeilzadeh F; Doherty WOS
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37867-37881. PubMed ID: 33723770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Hansen LD; Eijsink VGH; Horn SJ; Várnai A
    Biotechnol Bioeng; 2023 Mar; 120(3):726-736. PubMed ID: 36471631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of solid and liquid fractions of pretreated Norway spruce as reductants in LPMO-supported saccharification of cellulose.
    Tang C; Gandla ML; Jönsson LJ
    Front Bioeng Biotechnol; 2022; 10():1071159. PubMed ID: 36582841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass.
    Bissaro B; Várnai A; Røhr ÅK; Eijsink VGH
    Microbiol Mol Biol Rev; 2018 Dec; 82(4):. PubMed ID: 30257993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions.
    Calderaro F; Keser M; Akeroyd M; Bevers LE; Eijsink VGH; Várnai A; van den Berg MA
    Biotechnol Biofuels; 2020 Nov; 13(1):195. PubMed ID: 33292403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.