These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29946620)

  • 1. Direct synthesis of graphene on silicon oxide by low temperature plasma enhanced chemical vapor deposition.
    Muñoz R; Martínez L; López-Elvira E; Munuera C; Huttel Y; García-Hernández M
    Nanoscale; 2018 Jul; 10(26):12779-12787. PubMed ID: 29946620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.
    Muñoz R; Munuera C; Martínez JI; Azpeitia J; Gómez-Aleixandre C; García-Hernández M
    2d Mater; 2017 Mar; 4(1):. PubMed ID: 28070341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of conducting transparent few-layer graphene directly on glass at 450 °C.
    Lee CS; Cojocaru CS; Moujahid W; Lebental B; Chaigneau M; Châtelet M; Normand FL; Maurice JL
    Nanotechnology; 2012 Jul; 23(26):265603. PubMed ID: 22699372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature Nitrogen Doping of Nanocrystalline Graphene Films with Tunable Pyridinic-N and Pyrrolic-N by Cold-Wall Plasma-Assisted Chemical Vapor Deposition.
    Zainal Ariffin NH; Mohammad Haniff MAS; Syono MI; Ambri Mohamed M; Hamzah AA; Hashim AM
    ACS Omega; 2021 Sep; 6(37):23710-23722. PubMed ID: 34568651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Growth of Uniform Multi-Layer Graphene Films Directly on Silicon Dioxide Substrates.
    Zhou L; Wei S; Ge C; Zhao C; Guo B; Zhang J; Zhao J
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of few-layer graphene grown by flame deposition from the perspective of gas composition and temperature.
    Ismail E; Fauzi FB; Mohamed MA; Mohd Yasin MF; Mohd Abid MAA; Yaacob II; Md Din MF; Ani MH
    RSC Adv; 2019 Jul; 9(36):21000-21008. PubMed ID: 35515528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.
    Ma Y; Kim D; Jang H; Cho SM; Chae H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9065-72. PubMed ID: 25971011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition.
    Kim Y; Song W; Lee SY; Jeon C; Jung W; Kim M; Park CY
    Appl Phys Lett; 2011 Jun; 98(26):263106-2631063. PubMed ID: 21799537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications.
    Lee SW; Mattevi C; Chhowalla M; Sankaran RM
    J Phys Chem Lett; 2012 Mar; 3(6):772-7. PubMed ID: 26286289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications.
    Cui L; Huan Y; Shan J; Liu B; Liu J; Xie H; Zhou F; Gao P; Zhang Y; Liu Z
    ACS Nano; 2020 Nov; 14(11):15327-15335. PubMed ID: 33180469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface Electrical Properties of Al
    Fisichella G; Schilirò E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition.
    Tai L; Zhu D; Liu X; Yang T; Wang L; Wang R; Jiang S; Chen Z; Xu Z; Li X
    Nanomicro Lett; 2018; 10(2):20. PubMed ID: 30393669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition.
    Yeh NC; Hsu CC; Bagley J; Tseng WS
    Nanotechnology; 2019 Apr; 30(16):162001. PubMed ID: 30634178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor.
    Huang BR; Hung SC; Ho YS; Chen YS; Yang WD
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition.
    Rodríguez-Villanueva S; Mendoza F; Weiner BR; Morell G
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source.
    Wu T; Shen H; Sun L; Cheng B; Liu B; Shen J
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2041-7. PubMed ID: 22462554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene.
    Müller M; Bouša M; Hájková Z; Ledinský M; Fejfar A; Drogowska-Horná K; Kalbáč M; Frank AO
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
    Vishwakarma R; Zhu R; Abuelwafa AA; Mabuchi Y; Adhikari S; Ichimura S; Soga T; Umeno M
    ACS Omega; 2019 Jun; 4(6):11263-11270. PubMed ID: 31460228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the conductivity of transparent graphene films via doping.
    Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J
    Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.