These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29946978)

  • 1. β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity.
    Hardy CD; Butler A
    J Biol Inorg Chem; 2018 Oct; 23(7):957-967. PubMed ID: 29946978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family.
    Reitz ZL; Hardy CD; Suk J; Bouvet J; Butler A
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19805-19814. PubMed ID: 31527229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.
    Kem MP; Butler A
    Biometals; 2015 Jun; 28(3):445-59. PubMed ID: 25677460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus.
    Barbeau K; Zhang G; Live DH; Butler A
    J Am Chem Soc; 2002 Jan; 124(3):378-9. PubMed ID: 11792199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.
    Palanché T; Blanc S; Hennard C; Abdallah MA; Albrecht-Gary AM
    Inorg Chem; 2004 Feb; 43(3):1137-52. PubMed ID: 14753838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and biosynthetic assembly of cupriachelin, a photoreactive siderophore from the bioplastic producer Cupriavidus necator H16.
    Kreutzer MF; Kage H; Nett M
    J Am Chem Soc; 2012 Mar; 134(11):5415-22. PubMed ID: 22381697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives.
    Homann VV; Edwards KJ; Webb EA; Butler A
    Biometals; 2009 Aug; 22(4):565-71. PubMed ID: 19357970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambiguity of NRPS Structure Predictions: Four Bidentate Chelating Groups in the Siderophore Pacifibactin.
    Hardy CD; Butler A
    J Nat Prod; 2019 Apr; 82(4):990-997. PubMed ID: 30869895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical reactivity of the iron(III) complex of a mixed-donor, α-hydroxy acid-containing chelate and its biological relevance to photoactive marine siderophores.
    Grabo JE; Chrisman MA; Webb LM; Baldwin MJ
    Inorg Chem; 2014 Jun; 53(11):5781-7. PubMed ID: 24881486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.
    Soe CZ; Codd R
    ACS Chem Biol; 2014 Apr; 9(4):945-56. PubMed ID: 24483365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, nature and utility of universal iron chelator - Siderophore: A review.
    Khan A; Singh P; Srivastava A
    Microbiol Res; 2018; 212-213():103-111. PubMed ID: 29103733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactive siderophores: Structure, function and biology.
    Butler A; Harder T; Ostrowski AD; Carrano CJ
    J Inorg Biochem; 2021 Aug; 221():111457. PubMed ID: 34010741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination Chemistry of Microbial Iron Transport.
    Raymond KN; Allred BE; Sia AK
    Acc Chem Res; 2015 Sep; 48(9):2496-505. PubMed ID: 26332443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification.
    Bultreys A; Gheysen I; Maraite H; de Hoffmann E
    Appl Environ Microbiol; 2001 Apr; 67(4):1718-27. PubMed ID: 11282626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
    Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE
    Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore-promoted dissolution of chromium from hydroxide minerals.
    Duckworth OW; Akafia MM; Andrews MY; Bargar JR
    Environ Sci Process Impacts; 2014 May; 16(6):1348-59. PubMed ID: 24683601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria.
    Crosa JH; Walsh CT
    Microbiol Mol Biol Rev; 2002 Jun; 66(2):223-49. PubMed ID: 12040125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage.
    Haas H
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):316-30. PubMed ID: 12759789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol Siderophore Transport by Vibrio cholerae.
    Wyckoff EE; Allred BE; Raymond KN; Payne SM
    J Bacteriol; 2015 Sep; 197(17):2840-9. PubMed ID: 26100039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.