BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29947042)

  • 1. Laser-Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel.
    Rahimi R; Shams Es-Haghi S; Chittiboyina S; Mutlu Z; Lelièvre SA; Cakmak M; Ziaie B
    Adv Healthc Mater; 2018 Aug; 7(16):e1800231. PubMed ID: 29947042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics.
    Gilshteyn EP; Lin S; Kondrashov VA; Kopylova DS; Tsapenko AP; Anisimov AS; Hart AJ; Zhao X; Nasibulin AG
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28069-28075. PubMed ID: 30052424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring.
    Gu G; Xu H; Peng S; Li L; Chen S; Lu T; Guo X
    Soft Robot; 2019 Jun; 6(3):368-376. PubMed ID: 30848994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes.
    Fang L; Zhang J; Wang W; Zhang Y; Chen F; Zhou J; Chen F; Li R; Zhou X; Xie Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56393-56402. PubMed ID: 33274913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.
    Wang S; Xu J; Wang W; Wang GN; Rastak R; Molina-Lopez F; Chung JW; Niu S; Feig VR; Lopez J; Lei T; Kwon SK; Kim Y; Foudeh AM; Ehrlich A; Gasperini A; Yun Y; Murmann B; Tok JB; Bao Z
    Nature; 2018 Mar; 555(7694):83-88. PubMed ID: 29466334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering.
    Sasaki M; Karikkineth BC; Nagamine K; Kaji H; Torimitsu K; Nishizawa M
    Adv Healthc Mater; 2014 Nov; 3(11):1919-27. PubMed ID: 24912988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.
    Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q
    J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal.
    Hao XP; Zhang CW; Zhang XN; Hou LX; Hu J; Dickey MD; Zheng Q; Wu ZL
    Small; 2022 Jun; 18(23):e2201643. PubMed ID: 35532205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals.
    Yuan X; Wu P; Gao Q; Xu J; Guo B; He Y
    Mater Horiz; 2022 Mar; 9(3):961-972. PubMed ID: 35179166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile strategy to fabricate a skin-like hydrogel with adhesive and highly stretchable attributes through small molecule triggering toward flexible electronics.
    Chen Q; Ke X; Cai Y; Wang H; Dong Z; Li X; Li J; Xu X; Luo J; Li J
    J Mater Chem B; 2023 Nov; 11(46):11035-11043. PubMed ID: 37964679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics.
    Wang Q; Li Y; Lin Y; Sun Y; Bai C; Guo H; Fang T; Hu G; Lu Y; Kong D
    Nanomicro Lett; 2024 Jan; 16(1):87. PubMed ID: 38214840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Highly Stretchable, Real-Time Self-Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics.
    Luo J; Yang J; Zheng X; Ke X; Chen Y; Tan H; Li J
    Adv Healthc Mater; 2020 Feb; 9(4):e1901423. PubMed ID: 31945276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion between highly stretchable materials.
    Tang J; Li J; Vlassak JJ; Suo Z
    Soft Matter; 2016 Jan; 12(4):1093-9. PubMed ID: 26573427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics.
    Guo X; Li J; Wang J; Huang L; Cheng G; Zhang Q; Zhu H; Zhang M; Zhu S
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100716. PubMed ID: 34962018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-degradable, tough and highly stretchable hydrogels.
    Fonseca RG; De Bon F; Pereira P; Carvalho FM; Freitas M; Tavakoli M; Serra AC; Fonseca AC; Coelho JFJ
    Mater Today Bio; 2022 Jun; 15():100325. PubMed ID: 35757031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.