These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 29947123)
21. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence. Mango H; Ryan P Sci Total Environ; 2015 Feb; 505():1331-9. PubMed ID: 24726513 [TBL] [Abstract][Full Text] [Related]
22. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
23. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
24. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data. Killingsworth BA; Bao H; Kohl IE Environ Sci Technol; 2018 Jun; 52(11):6126-6136. PubMed ID: 29745225 [TBL] [Abstract][Full Text] [Related]
25. The Neoarchaean surficial sulphur cycle: An alternative hypothesis based on analogies with 20th-century atmospheric lead. Gallagher M; Whitehouse MJ; Kamber BS Geobiology; 2017 May; 15(3):385-400. PubMed ID: 28299862 [TBL] [Abstract][Full Text] [Related]
26. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles. Dold B; Spangenberg JE Environ Sci Technol; 2005 Aug; 39(15):5650-6. PubMed ID: 16124299 [TBL] [Abstract][Full Text] [Related]
27. Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei. Davidson MM; Bisher ME; Pratt LM; Fong J; Southam G; Pfiffner SM; Reches Z; Onstott TC Appl Environ Microbiol; 2009 Sep; 75(17):5621-30. PubMed ID: 19561180 [TBL] [Abstract][Full Text] [Related]
28. Seasonal and event variations in delta34S values of stream sulfate in a Vermont forested catchment: implications for sulfur sources and cycling. Shanley JB; Mayer B; Mitchell MJ; Bailey SW Sci Total Environ; 2008 Oct; 404(2-3):262-8. PubMed ID: 18456308 [TBL] [Abstract][Full Text] [Related]
29. Exceptional sulfur and iron isotope enrichment in millimetre-sized, early Palaeozoic animal burrows. Harazim D; Virtasalo JJ; Denommee KC; Thiemeyer N; Lahaye Y; Whitehouse MJ Sci Rep; 2020 Nov; 10(1):20270. PubMed ID: 33219284 [TBL] [Abstract][Full Text] [Related]
30. On apparent mass-independent fractionation (MIF) signatures from phase partitioning at equilibrium. Campisi LD Isotopes Environ Health Stud; 2019 Dec; 55(6):607-629. PubMed ID: 31711301 [TBL] [Abstract][Full Text] [Related]
31. Concrete under sulphate attack: an isotope study on sulphur sources. Mittermayr F; Bauer C; Klammer D; Böttcher ME; Leis A; Escher P; Dietzel M Isotopes Environ Health Stud; 2012; 48(1):105-17. PubMed ID: 22321257 [TBL] [Abstract][Full Text] [Related]
32. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Farquhar J; Cliff J; Zerkle AL; Kamyshny A; Poulton SW; Claire M; Adams D; Harms B Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17638-43. PubMed ID: 23407162 [TBL] [Abstract][Full Text] [Related]
34. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia. Duda JP; Van Kranendonk MJ; Thiel V; Ionescu D; Strauss H; Schäfer N; Reitner J PLoS One; 2016; 11(1):e0147629. PubMed ID: 26807732 [TBL] [Abstract][Full Text] [Related]
35. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan. Glombitza C; Adhikari RR; Riedinger N; Gilhooly WP; Hinrichs KU; Inagaki F Front Microbiol; 2016; 7():1576. PubMed ID: 27761134 [TBL] [Abstract][Full Text] [Related]
36. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance. Noordmann J; Weyer S; Georg RB; Jöns S; Sharma M Isotopes Environ Health Stud; 2016; 52(1-2):141-63. PubMed ID: 26085006 [TBL] [Abstract][Full Text] [Related]
37. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks. Pili E; Tisserand D; Bureau S J Hazard Mater; 2013 Nov; 262():887-95. PubMed ID: 22819960 [TBL] [Abstract][Full Text] [Related]
38. Organic sulfur was integral to the Archean sulfur cycle. Fakhraee M; Katsev S Nat Commun; 2019 Oct; 10(1):4556. PubMed ID: 31591394 [TBL] [Abstract][Full Text] [Related]
39. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. Eickmann B; Thorseth IH; Peters M; Strauss H; Bröcker M; Pedersen RB Geobiology; 2014 Jul; 12(4):308-21. PubMed ID: 24725254 [TBL] [Abstract][Full Text] [Related]
40. Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging: Extracting local paleo-environmental information from modern and ancient sediments. Bryant RN; Jones C; Raven MR; Gomes ML; Berelson WM; Bradley AS; Fike DA Rapid Commun Mass Spectrom; 2019 Mar; 33(5):491-502. PubMed ID: 30561860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]