BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2994717)

  • 1. The oligosaccharide moiety of the beta 1-adrenergic receptor from turkey erythrocytes has a biantennary, N-acetyllactosamine-containing structure.
    Cervantes-Olivier P; Durieu-Trautmann O; Delavier-Klutchko C; Strosberg AD
    Biochemistry; 1985 Jul; 24(14):3765-70. PubMed ID: 2994717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolysis-associated deglycosylation of beta 1-adrenergic receptor in turkey erythrocytes and membranes.
    Jürss R; Hekman M; Helmreich EJ
    Biochemistry; 1985 Jun; 24(13):3349-54. PubMed ID: 2992582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of the turkey erythrocyte beta-adrenergic receptor.
    Durieu-Trautmann O; Delavier-Klutchko C; Vauquelin G; Strosberg AD
    J Supramol Struct; 1980; 13(4):411-9. PubMed ID: 6112288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid vesicle reconstitution of alprenolol-Sepharose-purified beta 1-adrenergic receptors. Interaction of the purified receptor with N.
    Kelleher DJ; Rashidbaigi A; Ruoho AE; Johnson GL
    J Biol Chem; 1983 Nov; 258(21):12881-5. PubMed ID: 6313681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oligosaccharide component of alpha 1-adrenergic receptors from BC3H1 and DDT1 muscle cells. Studies with glycosidases and photoaffinity labelling of intact cells.
    Terman BI; Reece JF; Brown RD; Insel PA
    Biochem J; 1988 Jul; 253(2):363-70. PubMed ID: 2845917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mammalian beta 2-adrenergic receptor: purification and characterization.
    Benovic JL; Shorr RG; Caron MG; Lefkowitz RJ
    Biochemistry; 1984 Sep; 23(20):4510-8. PubMed ID: 6093858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian beta-adrenergic receptors. Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains.
    Stiles GL; Benovic JL; Caron MG; Lefkowitz RJ
    J Biol Chem; 1984 Jul; 259(13):8655-63. PubMed ID: 6330118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microheterogeneity and oligosaccharide chains on the beta chains of HLA-DR, human major histocompatibility complex class II antigen, analyzed by the lectin-nitrocellulose sheet method.
    Kijimoto-Ochiai S; Hatae T; Katagiri YU; Okuyama H
    J Biochem; 1989 Nov; 106(5):771-7. PubMed ID: 2515191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of phosphorylated beta-adrenergic receptors from catecholamine-desensitized turkey erythrocytes.
    Stadel JM; Rebar R; Shorr RG; Nambi P; Crooke ST
    Biochemistry; 1986 Jun; 25(12):3719-24. PubMed ID: 3013295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity labeling of the beta-adrenergic receptor.
    Lavin TN; Heald SL; Jeffs PW; Shorr RG; Lefkowitz RJ; Caron MG
    J Biol Chem; 1981 Nov; 256(22):11944-50. PubMed ID: 6271767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3710-4. PubMed ID: 198798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoaffinity labeling of turkey erythrocyte beta-adrenergic receptors: degradation of the Mr = 49,000 protein explains apparent heterogeneity.
    Sibley DR; Peters JR; Nambi P; Caron MG; Lefkowitz RJ
    Biochem Biophys Res Commun; 1984 Mar; 119(2):458-64. PubMed ID: 6324763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes: evidence for a two-step mechanism.
    Stadel JM; Rebar R; Crooke ST
    Biochemistry; 1987 Sep; 26(18):5861-6. PubMed ID: 2823888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of the beta-adrenergic receptor of frog erythrocytes and development of potential affinity ligands.
    Caron MG; Shorr RG; Lefkowitz RJ; Heald SL; Jeffs PW; Zjawiony J; Pitha J
    Adv Cyclic Nucleotide Res; 1981; 14():127-34. PubMed ID: 6269375
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural analysis of the oligosaccharides of DR1 and DQw1 molecules.
    Iturbe S; Narasimhan S; Letarte M
    J Immunol; 1986 Jun; 136(12):4596-603. PubMed ID: 3486906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The canine renal parathyroid hormone receptor is a glycoprotein: characterization and partial purification.
    Karpf DB; Arnaud CD; King K; Bambino T; Winer J; Nyiredy K; Nissenson RA
    Biochemistry; 1987 Dec; 26(24):7825-33. PubMed ID: 2827760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate composition of the alpha-subunit of human choriogonadotropin (hCG alpha) and the free alpha molecules produced in pregnancy: most free alpha and some combined hCG alpha molecules are fucosylated.
    Blithe DL
    Endocrinology; 1990 Jun; 126(6):2788-99. PubMed ID: 1693562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of complexes between avidin and beta-adrenergic receptors using biotinyl-alprenolol derivatives.
    Meier KE; Ruoho AE
    Biochim Biophys Acta; 1983 Dec; 761(3):257-61. PubMed ID: 6317049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding characteristics of 3H-dihydroalprenolol to beta-adrenergic receptors of rat brain: influence of exo- and endo-glycosidases and glycopeptidase.
    Tsuchihashi H; Nagatomo T
    Jpn J Pharmacol; 1985 Aug; 38(4):403-9. PubMed ID: 2999487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.